scholarly journals Evidence That the ATR/Chk1 Pathway Maintains Normal Replication Fork Progression during Unperturbed S Phase

Cell Cycle ◽  
2006 ◽  
Vol 5 (19) ◽  
pp. 2203-2209 ◽  
Author(s):  
Eva Petermann ◽  
Keith W. Caldecott
2019 ◽  
Vol 218 (9) ◽  
pp. 2865-2875 ◽  
Author(s):  
Jone Michelena ◽  
Marco Gatti ◽  
Federico Teloni ◽  
Ralph Imhof ◽  
Matthias Altmeyer

The DNA replication machinery frequently encounters impediments that slow replication fork progression and threaten timely and error-free replication. The CHK1 protein kinase is essential to deal with replication stress (RS) and ensure genome integrity and cell survival, yet how basal levels and activity of CHK1 are maintained under physiological, unstressed conditions is not well understood. Here, we reveal that CHK1 stability is controlled by its steady-state activity during unchallenged cell proliferation. This autoactivatory mechanism, which depends on ATR and its coactivator ETAA1 and is tightly associated with CHK1 autophosphorylation at S296, counters CHK1 ubiquitylation and proteasomal degradation, thereby preventing attenuation of S-phase checkpoint functions and a compromised capacity to respond to RS. Based on these findings, we propose that steady-state CHK1 activity safeguards its stability to maintain intrinsic checkpoint functions and ensure genome integrity and cell survival.


2006 ◽  
Vol 26 (8) ◽  
pp. 3319-3326 ◽  
Author(s):  
Eva Petermann ◽  
Apolinar Maya-Mendoza ◽  
George Zachos ◽  
David A. F. Gillespie ◽  
Dean A. Jackson ◽  
...  

ABSTRACT Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1 −/− chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1 −/− cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3 −/− DT40 cells. Rather, we observed an increased number of replication fibers in Chk1 −/− cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1 −/− cells are associated with the accumulation of aberrant replication fork structures.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Srividya Bhaskara ◽  
Vincent Jacques ◽  
James R Rusche ◽  
Eric N Olson ◽  
Bradley R Cairns ◽  
...  

Oncogene ◽  
2006 ◽  
Vol 25 (44) ◽  
pp. 5921-5932 ◽  
Author(s):  
T Shimura ◽  
M Toyoshima ◽  
S K Adiga ◽  
T Kunoh ◽  
H Nagai ◽  
...  

2010 ◽  
Vol 191 (7) ◽  
pp. 1285-1297 ◽  
Author(s):  
Xin Quan Ge ◽  
J. Julian Blow

Replication origins are licensed by loading MCM2-7 hexamers before entry into S phase. However, only ∼10% of licensed origins are normally used in S phase, with the others remaining dormant. When fork progression is inhibited, dormant origins initiate nearby to ensure that all of the DNA is eventually replicated. In apparent contrast, replicative stress activates ataxia telangiectasia and rad-3–related (ATR) and Chk1 checkpoint kinases that inhibit origin firing. In this study, we show that at low levels of replication stress, ATR/Chk1 predominantly suppresses origin initiation by inhibiting the activation of new replication factories, thereby reducing the number of active factories. At the same time, inhibition of replication fork progression allows dormant origins to initiate within existing replication factories. The inhibition of new factory activation by ATR/Chk1 therefore redirects replication toward active factories where forks are inhibited and away from regions that have yet to start replication. This minimizes the deleterious consequences of fork stalling and prevents similar problems from arising in unreplicated regions of the genome.


2013 ◽  
Vol 41 (6) ◽  
pp. 1701-1705 ◽  
Author(s):  
Divya Ramalingam Iyer ◽  
Nicholas Rhind

Cell-cycle checkpoints are generally global in nature: one unattached kinetochore prevents the segregation of all chromosomes; stalled replication forks inhibit late origin firing throughout the genome. A potential exception to this rule is the regulation of replication fork progression by the S-phase DNA damage checkpoint. In this case, it is possible that the checkpoint is global, and it slows all replication forks in the genome. However, it is also possible that the checkpoint acts locally at sites of DNA damage, and only slows those forks that encounter DNA damage. Whether the checkpoint regulates forks globally or locally has important mechanistic implications for how replication forks deal with damaged DNA during S-phase.


2012 ◽  
Vol 443 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Rebecca M. Jones ◽  
Eva Petermann

Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.


2000 ◽  
Vol 14 (1) ◽  
pp. 81-96 ◽  
Author(s):  
Christian Frei ◽  
Susan M. Gasser

We have examined the cellular function of Sgs1p, a nonessential yeast DNA helicase, homologs of which are implicated in two highly debilitating hereditary human diseases (Werner's and Bloom's syndromes). We show that Sgs1p is an integral component of the S-phase checkpoint response in yeast, which arrests cells due to DNA damage or blocked fork progression during DNA replication. DNA polε and Sgs1p are found in the same epistasis group and act upstream of Rad53p to signal cell cycle arrest when DNA replication is perturbed. Sgs1p is tightly regulated through the cell cycle, accumulates in S phase and colocalizes with Rad53p in S-phase-specific foci, even in the absence of fork arrest. The association of Rad53p with a chromatin subfraction is Sgs1p dependent, suggesting an important role for the helicase in the signal-transducing pathway that monitors replication fork progression.


2008 ◽  
Vol 19 (6) ◽  
pp. 2373-2378 ◽  
Author(s):  
Eva Petermann ◽  
Thomas Helleday ◽  
Keith W. Caldecott

The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone.


1982 ◽  
Vol 95 (1) ◽  
pp. 323-331 ◽  
Author(s):  
F Haugli ◽  
R Andreassen ◽  
S Funderud

DNA from synchronously replicating nuclei of Physarum polycephalum was studied electron microscopically after 15, 30, 60, and 90 or 120 min of replication in the presence or absence of the protein synthesis inhibitor cycloheximide. The replication-loop size-distribution showed that replication fork progression is severely retarded in the presence of cycloheximide. Analysis of replication-loop frequency showed a similar pattern in control and cyclo-heximide-treated samples, with an increase from 15 to 30 and 60 min. This suggests, surprisingly, that initiations of new replicons either may not be inhibited by cycloheximide or, alternatively, that all initiations have already taken place at the very start of S-phase. The latter conclusion is favored in the light of previous results in our laboratory, discussed here.


Sign in / Sign up

Export Citation Format

Share Document