scholarly journals Rb inactivation in cell cycle and cancer: The puzzle of highly regulated activating phosphorylation of CDK4 versus constitutively active CDK-activating kinase

Cell Cycle ◽  
2010 ◽  
Vol 9 (4) ◽  
pp. 689-699 ◽  
Author(s):  
Sabine Paternot ◽  
Laurence Bockstaele ◽  
Xavier Bisteau ◽  
Hugues Kooken ◽  
Katia Coulonval ◽  
...  
2020 ◽  
Vol 117 (37) ◽  
pp. 22849-22857 ◽  
Author(s):  
Basil J. Greber ◽  
Juan M. Perez-Bertoldi ◽  
Kif Lim ◽  
Anthony T. Iavarone ◽  
Daniel B. Toso ◽  
...  

The human CDK-activating kinase (CAK), a complex composed of cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical regulator of transcription initiation and the cell cycle. It acts by phosphorylating the C-terminal heptapeptide repeat domain of the RNA polymerase II (Pol II) subunit RPB1, which is an important regulatory event in transcription initiation by Pol II, and it phosphorylates the regulatory T-loop of CDKs that control cell cycle progression. Here, we have determined the three-dimensional (3D) structure of the catalytic module of human CAK, revealing the structural basis of its assembly and providing insight into CDK7 activation in this context. The unique third component of the complex, MAT1, substantially extends the interaction interface between CDK7 and cyclin H, explaining its role as a CAK assembly factor, and it forms interactions with the CDK7 T-loop, which may contribute to enhancing CAK activity. We have also determined the structure of the CAK in complex with the covalently bound inhibitor THZ1 in order to provide insight into the binding of inhibitors at the CDK7 active site and to aid in the rational design of therapeutic compounds.


1994 ◽  
Vol 127 (2) ◽  
pp. 467-478 ◽  
Author(s):  
J P Tassan ◽  
S J Schultz ◽  
J Bartek ◽  
E A Nigg

The activity of cyclin-dependent kinases (cdks) depends on the phosphorylation of a residue corresponding to threonine 161 in human p34cdc2. One enzyme responsible for phosphorylating this critical residue has recently been purified from Xenopus and starfish. It was termed CAK (for cdk-activating kinase), and it was shown to contain p40MO15 as its catalytic subunit. In view of the cardinal role of cdks in cell cycle control, it is important to learn if and how CAK activity is regulated during the somatic cell cycle. Here, we report a molecular characterization of a human p40MO15 homologue and its associated CAK activity. We have cloned and sequenced a cDNA coding for human p40MO15, and raised specific polyclonal and monoclonal antibodies against the corresponding protein expressed in Escherichia coli. These tools were then used to demonstrate that p40MO15 protein expression and CAK activity are constant throughout the somatic cell cycle. Gel filtration suggests that active CAK is a multiprotein complex, and immunoprecipitation experiments identify two polypeptides of 34 and 32 kD as likely complex partners of p40MO15. The association of the three proteins is near stoichiometric and invariant throughout the cell cycle. Immunocytochemistry and biochemical enucleation experiments both demonstrate that p40MO15 is nuclear at all stages of the cell cycle (except for mitosis, when the protein redistributes throughout the cell), although the p34cdc2/cyclin B complex, one of the major purported substrates of CAK, occurs in the cytoplasm until shortly before mitosis. The absence of obvious changes in CAK activity in exponentially growing cells constitutes a surprise. It suggests that the phosphorylation state of threonine 161 in p34cdc2 (and the corresponding residue in other cdks) may be regulated primarily by the availability of the cdk/cyclin substrates, and by phosphatase(s).


2020 ◽  
Author(s):  
Stefan Peissert ◽  
Andreas Schlosser ◽  
Rafaela Kendel ◽  
Jochen Kuper ◽  
Caroline Kisker

AbstractCDK7, Cyclin H, and MAT1 form the heterotrimeric CDK-activating kinase (CAK) complex. CAK is a vital factor for the two essential processes of transcription and cell cycle control. When associated with the general transcription factor II H (TFIIH) it activates RNA polymerase II by hyperphosphorylation of its C-terminal domain (CTD). In the absence of TFIIH it phosphorylates the T-loop of CDKs that control cell cycle progression. CAK holds a special position among the CDK branch due to this dual activity and the dependence on the MAT1 protein for activation in addition to Cyclin H. We solved the structure of the CAK complex from the model organism C. thermophilum at 2.6 Å resolution. Our structure reveals an intricate network of interactions between MAT1 and its two binding partners CDK7 and Cyclin H providing a structural basis for the mechanism of CDK7 activation and CAK activity regulation. In vitro activity measurements combined with functional mutagenesis show that CDK7 activation can occur independently of T-loop phosphorylation and is thus exclusively MAT1 dependent by positioning the CDK7 T-loop in its active conformation. Finally, our structure of the active CAK with a peptide model provides a molecular rationale for heptad repeat phosphorylation.Significance StatementThe fundamental processes of cell cycle regulation and transcription are linked by the heterotrimeric CDK-activating kinase (CAK) complex. We have solved the crystal structure of the active CAK complex and provide a molecular rationale for CAK activation, regulation, and substrate recognition thereby highly advancing our understanding of this essential factor.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 79-79
Author(s):  
Florian C. Bassermann ◽  
Christine von Klitzing ◽  
Silvia Kluempen ◽  
Ren-Yuan Bai ◽  
Tao Ouyang ◽  
...  

Abstract Ubiquitin-mediated destruction of regulatory proteins marks the vital means of controlling cell cycle progresssion. The E3 ubiquitin-ligases are prominent in this process, as they allow the transfer of ubiquitin to the target protein and mediate substrate binding specificity. Recently, a new class of E3 ligases referred to as SCF complexes has been identified that consists of four subunits:SKP1, Cul1, Roc1 and an F-box protein, the latter of which determines substrate specifity. We previously reported the cloning of NIPA (nuclear interaction partner of ALK) in complex with constitutively-active oncogenic fusions of ALK, which contribute to the development of certain lymphomas and sarcomas. Subsequently we characterized NIPA as a human F-box protein that determines a novel SCF complex (SCFNIPA) whose cell cycle regulated activity is restricted to interphase to allow for substrate expression at G2/M and mitosis. Phosphorylation of NIPA in late S-phase was found to be the underlying mechanism of SCFNIPA inactivation. We have now identified the key mitotic regulator cyclin B1 to serve as the relevant substrate of the SCFNIPA complex. This targeting process is restricted to interphase and directed towards the nuclear pool of cyclin B1. Inactivation of NIPA by siRNAs results in nuclear accumulation of cyclin B1 in interphase and an elevation of cells in S-phase and mitosis. In contrast, expression of a phosphorylation deficient NIPA mutant that retains constitutive SCFNIPA activity throughout the cell cycle arrests cells at early prophase thus delaying mitotic entry. Both effects are likely attributable to either cyclin B1 accumulation in the case of NIPA inactivation by siRNA or untimely cyclin B degradation at G2/M upon expression of the constitutively active SCFNIPA complex. Cyclin B1 is physiologically kept cytoplasmic during interphase and premature nuclear accumulation has been associated with untimely mitotic entry, loss of checkpoint control and genomic instability. Our data provides a mechanism to inhibit premature nuclear accumulation of cyclin B1 in the mammalian cell cycle. NIPAs association with NPM-ALK of ALCL has been shown to be associated with NIPA phosphorylation and thus to the inactivation of the SCFNIPA complex. The mechanism described above may therefore provide a framework for understanding how this oncogene interferes with the physiologic regulation of cyclin B - a potential mechanism by which NPM-ALK transforms hematopoietic cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 686-686
Author(s):  
Hong He ◽  
Ken Ishiyama ◽  
Gheath Alatrash ◽  
Yukio Kondo ◽  
Sijie Lu ◽  
...  

Abstract Abstract 686 Cyclin E1 (CCNE1) and cyclin E2 (CCNE2) are tightly regulated cell cycle genes in normal cells but are over-expressed and constitutively active in breast cancer and in the majority of hematological malignances. To validate CCNE as a potential target antigen for T-cells in leukemia, we first confirmed aberrant CCNE1 and CCNE2 protein in PBMC from 26 (93%) of 28 patients (CML = 16; AML = 7; ALL =2; NHL = 3) by Western Blot compared to 4 (33%) of 12 healthy controls (p < 0.0005). Next, we screened the sequences of CCNE1 and CCNE2 for HLA-A*0201 binding motifs and identified a pair of homologous nonameric peptides with highest predicted binding to HLA-A*0201 using an NCBI algorithm. The peptides, denoted CCNE1M (144ILLDWLMEV152) and CCNE2L (144ILLDWLLEV152), differed at P7 (M or L), and both differed from mouse sequence at P1 (V). Synthetic mouse and human peptides were used to confirm high affinity HLA-A2 binding on T2 cells by FACS analysis and peptide-pulsed T2 were used to elicit peptide-specific CTLs from healthy HLA-A2+ PBMC in vitro. CCNE1M-CTL lines specifically lysed both CCNE1M-loaded and CCNE2L-loaded T2 cells, while no CTL could be elicited with mouse peptide. Similarly, CCNE2L-stimulated CTL lines killed CCNE1M-loaded and CCNE2L-loaded T2 cells but not non-loaded T2 cells. Using CCNE1M and CCNE2L HLA-A2 tetramers, we found that either tetramer could bind equally to either the CCNE1M- or CCE2L-derived CTL lines, suggesting that both peptides could be cross-recognized by CTL lines elicited with either peptide. To further study the cross-recognition and potential immune dominance of both peptides and to determine their potential anti-leukemia activity, CCNE1M- and CCNE2L-CTL clones were derived by limiting dilution assay. Two peptide-specific CTL clones from each of the lines showed 25% and 26% specific lysis, respectively, of leukemia cells at E:T 10:1. Neither CCNE-specific CTLs showed lysis of BM cells that were obtained from the same patient during remission, nor HLA-A2+ BM cells from a healthy donor. Next, we compared the T-cell antigen receptor (TCR) avidity of these CCNE1M- and the CCNE2L-CTL clones by measuring tetramer dissociation half-times (t1/2) at 25°C using CCNE1M/HLA-A2 and CCNE2L/HLA-A2 (and control pp65/HLA-A2) tetramers analyzed by flow cytometry. The decay of normalized (to time = 0) tetramer-bound fluorescence versus time was linear for each clone with either tetramer (R2 = 0.85 to 0.91), showing that tetramer binding avidity could be used to proportionally determine TCR affinity. Furthermore, first order kinetics could be used to determine the t1/2 of each of the clones. The t1/2 of CCNE1M/HLA-A2 tetramer was 85 min and 25 min, respectively, while the t1/2of CCNE1L/HLA-A2 was 30 min and 11 min, respectively, for the CCNE1M-CTL and the CCNE2L-CTL. This suggests that while both peptides were cross recognized by unique T-cell clones (with unique TCR, determined by TCR-Vβ sequence comparisons), CCNE1M appeared to be immunodominant. To determine whether immune response (IR) to either peptide occurred in leukemia patients, we studied PBMC from 18 patients (10 CML; 8 ALL) before and 3–6 mo after SCT with CCNE1M/HLA-A2- and CCNE2L/HLA-A2-tetramer assay. The mean number of CCNE1M-CTL and CCNE2L-CTL cells increased after SCT (p< 0.002 in CCNE1M-CTL and CCNE2L-CTL) compared to no change in mean number of pp65-CTL before/after SCT. IR (defined as ≥ 20% increase of specific CTL after SCT) to either CCNE1M or CCNE2L did not correlate with type of leukemia, donor-recipient HLA disparity (matched or mismatched), or disease status prior to SCT by Fisher's exact test. However, in 8 CML patients not in remission prior to SCT, IR to either CCNE1 or CCNE2 occurred more frequently in patients who achieved CR compared to those that did not achieve CR after SCT (100% vs. 33%, respectively; p < 0.04). These findings were confirmed in an additional 25 AML patients with active disease at SCT. To study whether the peptide-specific CTL were functional, we measured IFN-γ and TNF-αa production after peptide stimulation by Luminex bead assay and by intracellular cytokine flow cytometry (CFC). The assays showed production of IFN-γ and TNF-αa cytokines by T-cells after stimulation with CCNE1M or CCNE2Lpeptides. Taken together, these results show that CCNE1M and CCNE2Lself-peptides from constitutively active cell cycle proteins are novel leukemia-associated antigens that could be studied in immunotherapy strategies. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 218 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Miao Wang ◽  
Çiğdem Atayar ◽  
Stefano Rosati ◽  
Anneke Bosga-Bouwer ◽  
Philip Kluin ◽  
...  

2000 ◽  
Vol 20 (23) ◽  
pp. 8969-8982 ◽  
Author(s):  
Noriaki Nakamura ◽  
Shivapriya Ramaswamy ◽  
Francisca Vazquez ◽  
Sabina Signoretti ◽  
Massimo Loda ◽  
...  

ABSTRACT PTEN acts as a tumor suppressor, at least in part, by antagonizing phosphoinositide 3-kinase (PI3K)/Akt signaling. Here we show that Forkhead transcription factors FKHRL1 and FKHR, substrates of the Akt kinase, are aberrantly localized to the cytoplasm and cannot activate transcription in PTEN-deficient cells. Restoration of PTEN function restores FKHR to the nucleus and restores transcriptional activation. Expression of a constitutively active form of FKHR that cannot be phosphorylated by Akt produces the same effect as reconstitution of PTEN on PTEN-deficient tumor cells. Specifically, activated FKHR induces apoptosis in cells that undergo PTEN-mediated cell death and induces G1 arrest in cells that undergo PTEN-mediated cell cycle arrest. Furthermore, both PTEN and constitutively active FKHR induce p27KIP1 protein but not p21. These data suggest that Forkhead transcription factors are critical effectors of PTEN-mediated tumor suppression.


Sign in / Sign up

Export Citation Format

Share Document