A comparison of anti-inflammatory activities of green tea and grapefruit seed extract with those of microencapsulated extracts

2012 ◽  
Vol 45 (5) ◽  
pp. 443 ◽  
Author(s):  
Yoon Kyung Jun ◽  
Myung Hwan Kim ◽  
Pil Nam Seong ◽  
Moon-Jeong Chang
Author(s):  
Ok Kyung Kim ◽  
Da-Eun Nam ◽  
Min-Jae Lee ◽  
Namgil Kang ◽  
Jae-Youn Lim ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Satheesh Babu Natarajan ◽  
Suriyakala Perumal Chandran ◽  
Sahar Husain Khan ◽  
Packiyaraj Natarajan ◽  
Karthiyaraj Rengarajan

Background: Tea (Camellia sinensis, Theaceae) is the second most consumed beverage in the world. Green tea is the least processed and thus contain rich antioxidant level, and believed to have most of the health benefits. </p><p> Methods: We commenced to search bibliographic collection of peer reviewed research articles and review articles to meet the objective of this study. </p><p> Results: From this study, we found that the tea beverage contains catechins are believed to have a wide range of health benefits which includes neuroprotective, anti-inflammatory, antiulcer, antiviral, antibacterial, and anti-parasitic effects. The four major catechin compounds of green tea are epigallocatechin (EGC), epicatechin (EC), epigallocatechin gallate (EGCG), and epicatechin gallate (ECG), of which EGCG is the major constituent and representing 50-80% of the total catechin content. And also contain xanthine derivatives such as caffeine, theophylline, and theobromine, and the glutamide derivative theanine. It also contains many nutritional components, such as vitamin E, vitamin C, fluoride, and potassium. We sum up the various green tea phytoconstituents, extraction methods, and its medicinal applications. </p><p> Conclusion: In this review article, we have summarized the pharmacological importance of green tea catechin which includes antioxidant potential, anti-inflammatory, antimicrobial, anticancer, antidiabetic and cosmetic application.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 877 ◽  
Author(s):  
Swarup Roy ◽  
Hyun Chan Kim ◽  
Pooja S. Panicker ◽  
Jong-Whan Rhim ◽  
Jaehwan Kim

Here, we report the fabrication and characterization of cellulose nanofiber (CNF)-based nanocomposite films reinforced with zinc oxide nanorods (ZnOs) and grapefruit seed extract (GSE). The CNF is isolated via a combination of chemical and physical methods, and the ZnO is prepared using a simple precipitation method. The ZnO and GSE are used as functional nanofillers to produce a CNF/ZnO/GSE film. Physical (morphology, chemical interactions, optical, mechanical, thermal stability, etc.) and functional (antimicrobial and antioxidant activities) film properties are tested. The incorporation of ZnO and GSE does not impact the crystalline structure, mechanical properties, or thermal stability of the CNF film. Nanocomposite films are highly transparent with improved ultraviolet blocking and vapor barrier properties. Moreover, the films exhibit effective antimicrobial and antioxidant actions. CNF/ZnO/GSE nanocomposite films with better quality and superior functional properties have many possibilities for active food packaging use.


Author(s):  
Tomokazu Ohishi ◽  
Shingo Goto ◽  
Pervin Monira ◽  
Mamoru Isemura ◽  
Yoriyuki Nakamura

Author(s):  
Iswariya S. ◽  
Uma T. S.

Objective: The present study was designed to identify the bioactive phytochemicals and its antibacterial and in vitro anti-inflammatory potential of aqueous and methanolic seed extract of Citrullus lanatus.Methods: The phytochemical screening of both the aqueous and methanolic seed extract was carried out qualitatively to identify the major Phyto-constituents present in the extracts. The antimicrobial activity of the extracts was evaluated against six pathogenic bacterial strains by agar well diffusion method and the Minimum inhibitory concentration (MIC) was determined by broth dilution method. In vitro anti-inflammatory activity of C. lanatus seed extracts was evaluated by using human red blood cell (HRBC) membrane stabilization and inhibition of albumin denaturation method.Results: The results of the study indicated that both the extracts of the seed having antimicrobial activity, while the methanolic extract showed more significant activity against the tested organism than aqueous extract. Methanol extract had the lowest MIC of 1.562 mg/ml against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa and Bacillus subtilis, whereas in aqueous extract was highly sensitive to Bacillus subtilis, E. coli and Klebsiella pneumonia with MIC of 3.125 and 6.25 mg/ml, respectively. Methanolic extracts exerted comparative higher anti-inflammatory activity than aqueous extract.Conclusion: Present study provides a firm evidence to support that the synergistic effect of C. lanatus seed extracts having potent anti-inflammatory and antimicrobial property, which might serve as an effective drug for various microbial infections and inflammatory disorders.


2021 ◽  
Vol 19 (3) ◽  
pp. 355-363
Author(s):  
Jung-Wook Kang ◽  
In-Chul Lee

Purpose: This study aimed to investigate the effects of the Cassia obtusifolia L. seed extract (CSE) on particulate matter (PM)-induced skin.Methods: The effects of CSE on cell viability were evaluated using a skin cell line. To determine the anti-inflammatory effects and matrix metallopeptidase-1 (MMP-1)-inhibitory effects of CSE on PM-induced skin, NO and MMP-1 expressions were measured using an enzyme-linked immunosorbent assay (ELISA) kit. Also, the effects of CSE was investigated the induction of IL-8 and TNF-α treated PM on reconstructed human full thickness skin models.Results: It was observed that CSE decreased NO production in PM-induced RAW 264.7 cells without cytotoxicity. In addition, CSE decreased the expression of MMP-1 in PM-induced cells in a dose-dependent manner. CSE decreased IL-8 and TNF-α production in a PM-reconstructed human skin model.Conclusion: These results indicate that CSE could be used as a cosmetic material to induce anti-inflammation and inhibition of MMP-1 in PM-induced skin.


Author(s):  
Siqi Wang ◽  
Xiaoyun Liang ◽  
Wangchen Zhao ◽  
Xiaoyu Mi ◽  
Chen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document