Isolation and Characterization of Relevant Algal and Bacterial Strains from Egyptian Environment for Potential Use in Photosynthetically Aerated Wastewater Treatment

Author(s):  
Marwa El Rakaiby
2013 ◽  
Vol 33 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Cintia Anabela Mazzucotelli ◽  
Alejandra Graciela Ponce ◽  
Catalina Elena Kotlar ◽  
María del Rosario Moreira

2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Rute Ferreira ◽  
Rui Amado ◽  
Jorge Padrão ◽  
Vânia Ferreira ◽  
Nicolina M Dias ◽  
...  

ABSTRACT Bacteriophages (phages) are ubiquitous entities present in every conceivable habitat as a result of their bacterial parasitism. Their prevalence and impact in the ecology of bacterial communities and their ability to control pathogens make their characterization essential, particularly of new phages, improving knowledge and potential application. The isolation and characterization of a new lytic phage against Sphaerotilus natans strain DSM 6575, named vB_SnaP-R1 (SnaR1), is here described. Besides being the first sequenced genome of a Sphaerotilus natans infecting phage, 99% of its 41507 bp genome lacks homology with any other sequenced phage, revealing its uniqueness and previous lack of knowledge. Moreover, SnaR1 is the first Podoviridae phage described infecting this bacterium. Sphaerotilus natans is an important filamentous bacterium due to its deleterious effect on wastewater treatment plants (WWTP) and thus, phages may play a role as novel biotechnological tools against filamentous overgrowth in WWTP. The lytic spectrum of SnaR1 was restricted to its host strain, infecting only one out of three S. natans strains and infection assays revealed its ability to reduce bacterial loads. Results suggest SnaR1 as the prototype of a new phage genus and demonstrates its potential as a non-chemical alternative to reduce S. natans DSM 6575 cells.


2002 ◽  
Vol 68 (9) ◽  
pp. 4390-4398 ◽  
Author(s):  
S. A. F. T. van Hijum ◽  
G. H. van Geel-Schutten ◽  
H. Rahaoui ◽  
M. J. E. C. van der Maarel ◽  
L. Dijkhuizen

ABSTRACT Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2→1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(2→1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.


2018 ◽  
Vol 78 (7) ◽  
pp. 1517-1524 ◽  
Author(s):  
Riqiang Li ◽  
Jianxing Wang ◽  
Hongjiao Li

Abstract As a step toward bioaugmentation of coking wastewater treatment 45 bacteria strains were isolated from the activated sludge of a coking wastewater treatment plant (WWTP). Three strains identified as Bacillus cereus, Pseudomonas synxantha, and Pseudomonas pseudoaligenes exhibited high dehydrogenase activity which indicates a strong ability to degrade organic matter. Subsequently all three strains showed high naphthalene degradation abilities. Naphthalene is a refractory compound often found in coking wastewater. For B. cereus and P. synxantha the maximum naphthalene removal rates were 60.4% and 79.8%, respectively, at an initial naphthalene concentration of 80 mg/L, temperature of 30 °C, pH of 7, a bacteria concentration of 15% (V/V), and shaking speed of 160 r/min. For P. pseudoaligenes, the maximum naphthalene removal rate was 77.4% under similar conditions but at 35 °C.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1684 ◽  
Author(s):  
Larissa Celiberto ◽  
Roseli Pinto ◽  
Elizeu Rossi ◽  
Bruce Vallance ◽  
Daniela Cavallini

Modulation of the gut microbiota through the use of probiotics has been widely used to treat or prevent several intestinal diseases. However, inconsistent results have compromised the efficacy of this approach, especially in severe conditions such as inflammatory bowel disease (IBD). The purpose of our study was to develop a personalized probiotic strategy and assess its efficacy in a murine model of intestinal inflammation. Commensal bacterial strains were isolated from the feces of healthy mice and then administered back to the host as a personalized treatment in dextran sodium sulfate (DSS)-induced colitis. Colonic tissues were collected for histological analysis and to investigate inflammatory markers such as Il-1β, Il-6, TGF-β, and Il-10, and the enzyme myeloperoxidase as a neutrophil marker. The group that received the personalized probiotic showed reduced susceptibility to DSS-colitis as compared to a commercial probiotic. This protection was characterized by a lower disease activity index and reduced histopathological damage in the colon. Moreover, the personalized probiotic was more effective in modulating the host immune response, leading to decreased Il-1β and Il-6 and increased TGF-β and Il-10 expression. In conclusion, our study suggests that personalized probiotics may possess an advantage over commercial probiotics in treating dysbiotic-related conditions, possibly because they are derived directly from the host’s own microbiota.


2018 ◽  
Vol 6 (2) ◽  
pp. 500-508
Author(s):  
Julie Ann A. Arcales ◽  
Garner Algo L.Alolod

Isolation and characterization of bacteria in food products are important to determine and distinguish the beneficial or harmful effects of microbiota in certain samples. Lactic acid bacteria in food products had long been associated to good factors as food preservatives and with added fermentation metabolites. This study isolated and characterized lactic acid bacteria from burong bangus. The culture and purification process of bacteria isolation resulted to 4 strains of lactic acid bacteria namely Enterococcus faecalis, Tetragenococcus muriaticus, Lactobacillus delbrueckii subp. delbrueckii and Carnobacterium divergens. High enzymatic activity were observed with E. faecalis particularly on lipase and protease assay. While C. divergens have no enzymatic activity against lipase, protease, amylase and cellulase. The antimicrobial property of L. delbrueckii is only susceptible to amoxicillin unlike the other three bacteria isolates. No antagonistic activity were observed with the four bacterial strains against Bacillus subtilis, Staphylococcus aureus and Escherichia coli. The result of this study showed promising benefits to the industry especially in developing countries like the Philippines because population are not yet so aware of this organisms and the benefits that can be derived through their consumption.


2012 ◽  
Vol 4 (4) ◽  
pp. 951-954 ◽  
Author(s):  
Yoshimi Shinmura ◽  
Alison K. S. Wee ◽  
Koji Takayama ◽  
Sankararamasubramanian Halasya Meenakshisundaram ◽  
Takeshi Asakawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document