scholarly journals An Investigation on the Dependency of Bursting Strength of Knitted Fabrics on Knit Structures

2017 ◽  
Vol 06 (03) ◽  
Author(s):  
Dereje Berihun Sitotaw
2021 ◽  
pp. 004051752110388
Author(s):  
Ayşe Şevkan Macit ◽  
Bahar Tiber

Ultrasonic seaming has become an important issue in recent years due to its various features. In this study, waterproof polyester knitted fabrics with polyurethane coating were used and the bursting strength, bending property and water permeability property of ultrasonic seaming were examined by changing various parameters. Besides, the ultrasonic seaming method was compared to conventional seaming and adhesive tape application. It is observed that there were high water permeability values generally in ultrasonic seaming and also fabrics with no water penetration were seen in this method, although, in some ultrasonic seaming parameters, values are lower than adhesive tape sealed ones. On the other hand, the bursting strength values of the ultrasonically sewn fabrics are found to be comparable to conventional seam and sealing adhesive tape when the optimum seaming parameters are determined. Also, it can be said that for the bending property according to increasing bending length values in this method compared with the others, ultrasonic seaming may find more usage areas where fabric stiffness is more advantageous. It has been observed that it is important to determine the fabric and ultrasonic sewing parameters according to the required performance property.


2017 ◽  
Vol 29 (3) ◽  
pp. 394-416 ◽  
Author(s):  
Burcu Sancar Besen ◽  
Onur Balci

Purpose The purpose of this paper is to investigate the effects of silicone-based softeners, which were developed with different particle sizes (nano, micro, and macro) and chemical structures, on the performance of 100 percent cotton fabrics knitted with different type of yarn (ring, open-end, and compact). Design/methodology/approach In the study, the silicone emulsions having expected particle sizes were produced at laboratory conditions. The produced silicone emulsions were applied to knitted fabrics with both padding and exhaust methods at different concentrations. Some characterization tests (particle size and zeta potential) were applied to the silicone emulsions before the applications. After the applications, CIELab values, whiteness and color fastness, hyrophility, abrasion, pilling, bursting strength, and stiffness performances of the samples were tested. The changes of the investigated properties were also examined via ANOVA. Findings According to the results, it was found that the silicone applications caused the CIELab values, whiteness degree, hyrophility, pilling, bursting strength and stiffness performance of the fabrics to change depending on the particle sizes of the emulsions, the yarn type of the fabrics, the application type, and the concentration of the silicone emulsions. When the ANOVA results were examined, it was seen that the types of the yarn and the silicone emulsions were the most effective working parameters on the results. Research limitations/implications Because no additives were added to the produced silicone emulsions, in the future research, they can be developed with the use of some additives. Thus, it can resolve some of the disadvantages of the silicone emulsions on the textiles. Practical implications While applying the silicone softeners to the knitted fabrics, the type of the yarn and the particle sizes of the emulsions must be determined according to each other, in order to obtain enough handle performance without causing negative change on the other important properties of the knitted fabrics. Originality/value When the studies regarding silicone softeners were investigated, it was found that there were no studies about the effect of the silicone softeners having different particle sizes on the physical and chemical structures of the knitted fabrics depending on the type of yarn and some working parameters such as concentration and type of the application.


2017 ◽  
Vol 12 (1) ◽  
pp. 155892501701200
Author(s):  
Züleyha Değirmenci ◽  
Ebru Çoruh

This paper reports the effect of loop length and raw material on the air permeability and the bursting strength of plain knitted fabrics. In this study, a series of plain knitted fabrics were produced on a circular knitting machine with cotton, polyester, acrylic and viscose by Ne 30/1 yarns. Each fabric type was produced with four different stitch lengths. All the fabrics were knitted at the same machine setting in order to determine the effect of their structure on the fabric properties. Their geometrical and physical properties were experimentally investigated. The influences of the loop length and the raw material on the number of the courses per cm, number of the wales per cm, loop shape factor, thickness, fabric unit weight, tightness factor, air permeability and bursting strength are analyzed. Statistical analysis indicates that raw material and loop length significantly parameters affect the air permeability and the bursting strength properties of the fabrics.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ismail Hossain ◽  
Imtiaz Ahmed Choudhury ◽  
Azuddin Bin Mamat ◽  
Abdus Shahid ◽  
Ayub Nabi Khan ◽  
...  

The main objective of this research is to predict the mechanical properties of viscose/lycra plain knitted fabrics by using fuzzy expert system. In this study, a fuzzy prediction model has been built based on knitting stitch length, yarn count, and yarn tenacity as input variables and fabric mechanical properties specially bursting strength as an output variable. The factors affecting the bursting strength of viscose knitted fabrics are very nonlinear. Hence, it is very challenging for scientists and engineers to create an exact model efficiently by mathematical or statistical model. Alternatively, developing a prediction model via ANN and ANFIS techniques is also difficult and time consuming process due to a large volume of trial data. In this context, fuzzy expert system (FES) is the promising modeling tool in a quality modeling as FES can map effectively in nonlinear domain with minimum experimental data. The model derived in the present study has been validated by experimental data. The mean absolute error and coefficient of determination between the actual bursting strength and that predicted by the fuzzy model were found to be 2.60% and 0.961, respectively. The results showed that the developed fuzzy model can be applied effectively for the prediction of fabric mechanical properties.


2016 ◽  
Vol 28 (4) ◽  
pp. 463-479 ◽  
Author(s):  
Selin Hanife Eryuruk ◽  
Fatma Kalaoglu

Purpose – Knitted fabrics containing elastane provide high level of comfort and ease of usage because of the elastic and drape properties over the body. Knitted fabrics respond to every movement of the body and return back to its original shape easily so they are used widely for apparel production. The most important properties required from the elastic knitted garments are wear comfort, fit, breathability and durability. The purpose of this paper is to analyse the effect of elastane yarn count and ground yarn count on the performance properties of 12 single jersey knitted fabrics were analysed after dying. Design/methodology/approach – The research design for this study consists an experimental study. In all, 12 fabrics containing half plating and full plating elastane were produced using 30/1-40/1 Ne yarn counts. Bursting strength, stretch recovery, residual extension, air permeability, spirality and drape properties of fabrics were evaluated. Findings – As a result of study it was found a certain effect as the elastane amount and count changed. For all types of knitted fabrics, bursting strength values increased and fabric spirality values decreased as the elastane amount and elastane yarn count increased. Also it was found a significant relationship between elastane amount and count with air permeability, spirality, bursting strength and drape. Originality/value – As a result of the literature review, it was seen that the effects of elastane amount, elastane yarn count and fabric yarn count on the performance properties of knitted fabrics has not been studied broadly.


2013 ◽  
Vol 14 (7) ◽  
pp. 1203-1207 ◽  
Author(s):  
Hafsa Jamshaid ◽  
Tanveer Hussain ◽  
Zulfiqar Ali Malik

2021 ◽  
Vol 2021 ◽  
pp. 208-214
Author(s):  
A. Oruç ◽  
Y. Arıkan ◽  
E. İlanbey ◽  
K. Özşahin

An awareness of environmental issues is crucial for textile engineering due to increasing consumption of textile fibres. In addition, levels of pollution are ever increasing due to single use polymeric packaging materials in our daily life. Single use polymeric packaging materials, such as PET beverage bottles, have impacts on the consumption of raw materials and energy, on the contamination of our water and atmosphere, on human health, on global climate change. In this point of view, the ability of the textile producers to recycle the disposed PET beverage bottles into textile products has a critical importance. In this study, performance properties of knitted fabrics produced from rPET and cotton/rPET blended vortex and ring yarns are investigated to figure out the reproducibility of environmentally friendly textile products. For this aim, 100% rPET, 50-50% rPET-Co and 50-50% VPET-Co yarns were produced by Vortex and Ring Spinning technologies with same yarn number as Ne 30/1. Then the knitted fabric samples were produced from these sample yarns and the fabrics were dyed. Dimensional stability, bursting strength and pilling resistance properties of the fabrics were examined. Dimensional stability properties of rPET used fabrics were found to be similar with the ones which VPET used. Pilling resistance and bursting strength of the sample fabrics were close to each other that rPET usage does not demonstrate any disadvantage. Consequently, rPET fibre usage instead of VPET fibre is found to be appropriate.


Sign in / Sign up

Export Citation Format

Share Document