Electrostatic interactions play key roles on the motions of molecular motors

Author(s):  
Lin Li
2019 ◽  
Vol 30 (24) ◽  
pp. 2953-2968 ◽  
Author(s):  
Hauke Drechsler ◽  
Yong Xu ◽  
Veikko F. Geyer ◽  
Yixin Zhang ◽  
Stefan Diez

Microtubule-associated proteins (MAPs) are a functionally highly diverse class of proteins that help to adjust the shape and function of the microtubule cytoskeleton in space and time. For this purpose, MAPs structurally support microtubules, modulate their dynamic instability, or regulate the activity of associated molecular motors. The microtubule-binding domains of MAPs are structurally divergent, but often depend on electrostatic interactions with the negatively charged surface of the microtubule. This suggests that the surface exposure of positive charges rather than a certain structural fold is sufficient for a protein to associate with microtubules. Consistently, positively charged artificial objects have been shown to associate with microtubules and to diffuse along their lattice. Natural MAPs, however, show a more sophisticated functionality beyond lattice-diffusion. Here, we asked whether basic electrostatic interactions are sufficient to also support advanced MAP functionality. To test this hypothesis, we studied simple positively charged peptide sequences for the occurrence of typical MAP-like behavior. We found that a multivalent peptide construct featuring four lysine-alanine heptarepeats (starPEG-(KA7)4)—but not its monovalent KA7-subunits—show advanced, biologically relevant MAP-like behavior: starPEG-(KA7)4 binds microtubules in the low nanomolar range, diffuses along their lattice with the ability to switch between intersecting microtubules, and tracks depolymerizing microtubule ends. Further, starPEG-(KA7)4 promotes microtubule nucleation and growth, mediates depolymerization coupled pulling at plus ends, and bundles microtubules without significantly interfering with other proteins on the microtubule lattice (as exemplified by the motor kinesin-1). Our results show that positive charges and multivalency are sufficient to mimic advanced MAP-like behavior.


2021 ◽  
Author(s):  
Ashok Pabbathi ◽  
Lawrence Coleman ◽  
Subash Godar ◽  
Apurba Paul ◽  
Aman Garlapati ◽  
...  

The dynein family of microtubule minus-end directed motor proteins drives diverse functions in eukaryotic cells, including cell division, intracellular transport, and flagellar beating. Motor protein processivity, which characterizes how far a motor walks before detaching from its filament, depends on the interaction between its microtubule-binding domain (MTBD) and the microtubule. Dynein's MTBD switches between high- and low-binding affinity states as it steps. Significant structural and functional data show that specific salt bridges within the MTBD and between the MTBD and the microtubule govern these affinity state shifts. However, recent computational work suggests that non-specific, long-range electrostatic interactions between the MTBD and the microtubule may also play a significant role in the processivity of dynein. To investigate this hypothesis, we mutated negatively charged amino acids remote from the dynein MTBD-microtubule-binding interface to neutral residues and measured the binding affinity using microscale thermophoresis and optical tweezers. We found a significant increase in the binding affinity of the mutated MTBDs for microtubules. Furthermore, we found that charge screening by free ions in solution differentially affected the binding and unbinding rates of MTBDs to microtubules. Together, these results demonstrate a significant role for long-range electrostatic interactions in regulating dynein-microtubule affinity. Moreover, these results provide insight into the principles that potentially underlie the biophysical differences between molecular motors with various processivities and protein-protein interactions more generally.


Author(s):  
Tim Oliver ◽  
Michelle Leonard ◽  
Juliet Lee ◽  
Akira Ishihara ◽  
Ken Jacobson

We are using video-enhanced light microscopy to investigate the pattern and magnitude of forces that fish keratocytes exert on flexible silicone rubber substrata. Our goal is a clearer understanding of the way molecular motors acting through the cytoskeleton co-ordinate their efforts into locomotion at cell velocities up to 1 μm/sec. Cell traction forces were previously observed as wrinkles(Fig.l) in strong silicone rubber films by Harris.(l) These forces are now measureable by two independant means.In the first of these assays, weakly crosslinked films are made, into which latex beads have been embedded.(Fig.2) These films report local cell-mediated traction forces as bead displacements in the plane of the film(Fig.3), which recover when the applied force is released. Calibrated flexible glass microneedles are then used to reproduce the translation of individual beads. We estimate the force required to distort these films to be 0.5 mdyne/μm of bead movement. Video-frame analysis of bead trajectories is providing data on the relative localisation, dissipation and kinetics of traction forces.


Author(s):  
Brigid R. Heywood ◽  
S. Champ

Recent work on the crystallisation of inorganic crystals under compressed monomolecular surfactant films has shown that two dimensional templates can be used to promote the oriented nucleation of solids. When a suitable long alkyl chain surfactant is cast on the crystallisation media a monodispersied population of crystals forms exclusively at the monolayer/solution interface. Each crystal is aligned with a specific crystallographic axis perpendicular to the plane of the monolayer suggesting that nucleation is facilitated by recognition events between the nascent inorganic solid and the organic template.For example, monolayers of the long alkyl chain surfactant, stearic acid will promote the oriented nucleation of the calcium carbonate polymorph, calcite, on the (100) face, whereas compressed monolayers of n-eicosyl sulphate will induce calcite nucleation on the (001) face, (Figure 1 & 2). An extensive program of research has confirmed the general principle that molecular recognition events at the interface (including electrostatic interactions, geometric homology, stereochemical complementarity) can be used to promote the crystal engineering process.


1998 ◽  
Vol 80 (08) ◽  
pp. 310-315 ◽  
Author(s):  
Marie-Christine Bouton ◽  
Christophe Thurieau ◽  
Marie-Claude Guillin ◽  
Martine Jandrot-Perrus

SummaryThe interaction between GPIb and thrombin promotes platelet activation elicited via the hydrolysis of the thrombin receptor and involves structures located on the segment 238-290 within the N-terminal domain of GPIbα and the positively charged exosite 1 on thrombin. We have investigated the ability of peptides derived from the 269-287 sequence of GPIbα to interact with thrombin. Three peptides were synthesized, including Ibα 269-287 and two scrambled peptides R1 and R2 which are comparable to Ibα 269-287 with regards to their content and distribution of anionic residues. However, R2 differs from both Ibα 269-287 and R1 by the shifting of one proline from a central position to the N-terminus. By chemical cross-linking, we observed the formation of a complex between 125I-Ibα 269-287 and α-thrombin that was inhibited by hirudin, the C-terminal peptide of hirudin, sodium pyrophosphate but not by heparin. The complex did not form when γ-thrombin was substituted for α-thrombin. Ibα 269-287 produced only slight changes in thrombin amidolytic activity and inhibited thrombin binding to fibrin. R1 and R2 also formed complexes with α-thrombin, modified slightly its catalytic activity and inhibited its binding to fibrin. Peptides Ibα 269-287 and R1 inhibited platelet aggregation and secretion induced by low thrombin concentrations whereas R2 was without effect. Our results indicate that Ibα 269-287 interacts with thrombin exosite 1 via mainly electrostatic interactions, which explains why the scrambled peptides also interact with exosite 1. Nevertheless, the lack of effect of R2 on thrombin-induced platelet activation suggests that proline 280 is important for thrombin interaction with GPIb.


2019 ◽  
Author(s):  
Drew P. Harding ◽  
Laura J. Kingsley ◽  
Glen Spraggon ◽  
Steven Wheeler

The intrinsic (gas-phase) stacking energies of natural and artificial nucleobases were explored using density functional theory (DFT) and correlated ab initio methods. Ranking the stacking strength of natural nucleobase dimers revealed a preference in binding partner similar to that seen from experiments, namely G > C > A > T > U. Decomposition of these interaction energies using symmetry-adapted perturbation theory (SAPT) showed that these dispersion dominated interactions are modulated by electrostatics. Artificial nucleobases showed a similar stacking preference for natural nucleobases and were also modulated by electrostatic interactions. A robust predictive multivariate model was developed that quantitively predicts the maximum stacking interaction between natural and a wide range of artificial nucleobases using molecular descriptors based on computed electrostatic potentials (ESPs) and the number of heavy atoms. This model should find utility in designing artificial nucleobase analogs that exhibit stacking interactions comparable to those of natural nucleobases. Further analysis of the descriptors in this model unveil the origin of superior stacking abilities of certain nucleobases, including cytosine and guanine.


2020 ◽  
Author(s):  
Zahari Vinarov ◽  
Gabriela Gancheva ◽  
Nikola Burdzhiev ◽  
Slavka S. Tcholakova

Although surfactants are frequently used in enabling formulations of poorly water-soluble drugs, the link between their structure and drug solubilization capacity is still unclear. We studied the solubilization of the “brick-dust” molecule itraconazole by 16 surfactants and 3 phospholipid:surfactant mixtures. NMR spectroscopy was used to study in more details the drug-surfactant interactions. Very high solubility of itraconazole (up to 3.6 g/L) was measured in anionic surfactant micelles at pH = 3, due to electrostatic attraction between the oppositely charged (at this pH) drug and surfactant molecules. <sup>1</sup>H NMR spectroscopy showed that itraconazole is ionized at two sites (2+ charge) at these conditions: in the phenoxy-linked piperazine nitrogen and in the dioxolane-linked triazole ring. The increase of amphiphile hydrophobic chain length had a markedly different effect, depending on the amphiphile type: the solubilization capacity of single-chain surfactants increased, whereas a decrease was observed for double-chained surfactants (phosphatidylglycerols). The excellent correlation between the chain melting temperatures of phosphatidylglycerols and itraconazole solubilization illustrated the importance of hydrophobic chain mobility. This study provides rules for selection of itraconazole solubilizers among classical single-chain surfactants and phospholipids. The basic physics underpinning the described effects suggests that these rules should be transferrable to other “brick-dust” molecules.


2018 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Alejandro Lara ◽  
David L. Mobley ◽  
Toon Vestraelen ◽  
Adelio R Matamala ◽  
...  

<div>Computer simulations of bio-molecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in bio-molecular systems and are therein described by atomic point charges.</div><div>In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute's electron density computed with an implicit solvent model and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the MBIS atomic charge method, including the solvent polarization, with a root mean square error of 2.0 kcal mol<sup>-1</sup> for the 613 organic molecules studied. The largest deviation was observed for phosphor-containing molecules and the molecules with amide, ester and amine functional groups.</div>


Sign in / Sign up

Export Citation Format

Share Document