Properties of Chemical Vapor Deposited ZrC coating layer for TRISO Coated Fuel Particle

2007 ◽  
Vol 44 (10) ◽  
pp. 580-584
Author(s):  
Jun-Gyu Kim ◽  
E-Sul Kum ◽  
Doo-Jin Choi ◽  
Young-Woo Lee ◽  
Ji-Yeon Park
2008 ◽  
Vol 45 (4) ◽  
pp. 245-249 ◽  
Author(s):  
Jun-Gyu Kim ◽  
Yoo-Youl Choi ◽  
Young-Woo Lee ◽  
Ji-Yeon Park ◽  
Doo-Jin Choi

2008 ◽  
Vol 376 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Shohei Ueta ◽  
Jun Aihara ◽  
Atsushi Yasuda ◽  
Hideharu Ishibashi ◽  
Tomoo Takayama ◽  
...  

2015 ◽  
Vol 1769 ◽  
Author(s):  
Félix Cancino Trejo ◽  
Mariana Sáenz Padilla ◽  
Eddie López-Honorato

ABSTRACTThe TRISO (tristructural isotropic) coated fuel particle is made of a uranium oxide kernel coated with three layers of pyrolytic carbon and one of silicon carbide. This fuel, originally used in High Temperature Reactors, has been proposed as accident tolerant fuel for Light Water Reactors after the accident in Fukushima. Although this fuel is capable of retaining fission products within the particle up to 1600°C, little is known on the origin of this temperature limit. Therefore, in order to increase the safety of this type of fuel, it is necessary to understand the origin of the degradation of the materials that compose this fuel. We have studied the effect of temperature on the microstructure and diffusion of silver in pyrolytic carbon coatings produced by fluidized bed chemical vapor deposition. Samples were heat treated at 1000°C, 1400°C and 1700°C for 200 hrs. under inert atmosphere. The effect of temperature on the microstructure and silver diffusion behavior were analyzed by Raman spectroscopy, X-Ray diffraction, optical microscopy, SEM and TEM. We observed that the microstructure of PyC changed drastically above 1400°C, showing the increase in anisotropy and the re-orientation of the graphene planes. The diffusion of silver appears to be also correlated with this change in microstructure.


Author(s):  
Rong Li ◽  
Bing Liu ◽  
Chunhe Tang

Tristructural-isotropic coated fuel particle is an important fuel design for high-temperature gas-cooled reactor. Irradiation-induced pyrocarbon (PyC) shrinkage and creep behavior will affect greatly the stresses of a TRISO-coated particle. In this study, 5 cases under different conditions by analytical solution were studied to calculate the particle stresses with different fuel behavior. These cases varied in particle geometries, the mount of gas pressure or fuel behavior. A comparison between the results and other benchmarking studies among different codes was made. The results indicated that the calculated results in this study were in good agreement with other codes.


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Author(s):  
L. M. Gignac ◽  
K. P. Rodbell

As advanced semiconductor device features shrink, grain boundaries and interfaces become increasingly more important to the properties of thin metal films. With film thicknesses decreasing to the range of 10 nm and the corresponding features also decreasing to sub-micrometer sizes, interface and grain boundary properties become dominant. In this regime the details of the surfaces and grain boundaries dictate the interactions between film layers and the subsequent electrical properties. Therefore it is necessary to accurately characterize these materials on the proper length scale in order to first understand and then to improve the device effectiveness. In this talk we will examine the importance of microstructural characterization of thin metal films used in semiconductor devices and show how microstructure can influence the electrical performance. Specifically, we will review Co and Ti silicides for silicon contact and gate conductor applications, Ti/TiN liner films used for adhesion and diffusion barriers in chemical vapor deposited (CVD) tungsten vertical wiring (vias) and Ti/AlCu/Ti-TiN films used as planar interconnect metal lines.


Sign in / Sign up

Export Citation Format

Share Document