scholarly journals Spermatozoa Morphology and Embryo Development of Four Species of Bivalves from Beibu Gulf

2020 ◽  
Vol 21 (02) ◽  
pp. 51-61
Author(s):  
Jian Chen ◽  
Zhenghua Deng ◽  
Haijun Wei ◽  
Wang Zhao ◽  
Mingqiang Chen ◽  
...  

The morphology of sperm and early embryo development of shellfish can provide guidance for classification and biological reproduction. In this study, scanning electron microscopy and light microscopy were used to determine the shape of the sperm, characterize the embryonic development, and measured the size of the mature eggs and the D-shape larvae of four different clam species (Paphia schnelliana, Lutraria sieboldii, Antigona lamellaris, and Paphia textzle). The results showed that these four clam species differ in sperm morphology and the size of the mature eggs and the Dshape larvae (P<0.01). There were also differences in embryonic development time and morphology. This analysis of spermatozoa morphology, egg size, D-shaped larvae size, and embryo development in these four different clam species provides the basis for classification and future breeding efforts.

Author(s):  
Shuang Cai ◽  
Shuang Quan ◽  
Guangxin Yang ◽  
Meixia Chen ◽  
Qianhong Ye ◽  
...  

ABSTRACTWith the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.


Author(s):  
Bradford W Daigneault

Abstract This review focuses on current knowledge of paternal contributions to preimplantation embryonic development with particular emphasis on large animals. Specifically, the included content aims to summarize genomic and epigenomic contributions of paternally expressed genes, their regulation, and chromatin structure that are indispensable for early embryo development. The accumulation of current knowledge will summarize conserved allelic function among species to include functional molecular and genomic studies across large domestic animals in context with reference to founding experimental models.


2019 ◽  
Vol 31 (1) ◽  
pp. 215
Author(s):  
M. B. Rodriguez ◽  
A. Gambini ◽  
D. F. Salamone

Androgenic haploid embryos were originally produced for the study of certain aspects of early embryo development. The generation of androgenic haploid embryos allows us to better understand the complementary parental contribution to embryonic development, and to examine the effects of haploid development on gene expression. Because mare oocytes for research are scarce, the generation of heterospecific androgenic embryos could be useful to study aspects of the biology of early embryo development, or to identify genes and their variations or mutations that are responsible for reproduction-related problems in mares and stallions, which is of interest for the breeding industry. Therefore, the aim of this work was to study the capability of equine sperm to induce embryonic development after injection into an enucleated oocyte from a different species. Porcine cumulus-oocyte complexes (COC) were obtained from abattoir ovaries and placed in 100-µL drops in vitro maturation (IVM) medium for 42h. Cumulus cells were removed with hyaluronidase and vortexing. Then, mature oocytes were subjected to intracytoplasmic sperm injection (ICSI) with stallion frozen-thawed semen (according to Rodriguez et al. 2015). Immediately after the last injection, the zona pellucida of injected oocytes was removed with protease treatment, the oocytes were treated with cytochalasin B, and the metaphase II enucleated with a 20-µm micropipette. Finally, embryos were placed in culture medium (SOF) in plates with the well-of-the-well (WOW) system. As control treatment, non-enucleated pig oocytes were injected with stallion (CE) and boar (CC) semen. At Day 4, embryos were evaluated for cleavage and number of blastomeres, and stained with Hoechst 33342 to verify the presence of DNA in each blastomere under the UV light. Embryos were stored for future PCR studies to validate the presence of equine DNA. Data were analysed by chi-squared test to compare the cleavage of both controls with the androgenic embryos. From a total of 53 androgenic haploid embryos, the cleavage rate was 62% (33/53). Embryos were cleaved in 2 to 4 cells in 72.7%, 5 to 8 cells in 18.2%, and 9+ cells in 9.1% at Day 4. Presence of DNA in all blastomeres was observed in 60.6% (20/33) of the androgenic haploid embryos, while 21.2% (7/33) of the embryos had 10 to 50% of blastomeres with DNA, and 18.6% (6/33) of the embryos did not have DNA in their blastomeres. The ICSI control embryos cleaved in 45.3% (34/75) and 64.9% (98/151) for groups CC and CE, respectively. Cleavage rates in control CE were significantly higher than those in control CC (P&lt;0.004). No statistical difference was observed in the control groups versus androgenic embryos. This preliminary results showed that a heterospecific ooplasm can be successfully used to allow an equine sperm DNA to decondense and to develop, even in absence of the female counterpart. Using this method, copies of a single sperm DNA can be produced to potentially evaluate individual aspects of early embryo development concerning the male contribution. This is the first report of successful androgenic embryos using a heterospecific oocyte to create copies of a horse sperm DNA.


Reproduction ◽  
2019 ◽  
Vol 158 (5) ◽  
pp. 453-463
Author(s):  
Joao Alveiro Alvarado Rincón ◽  
Patricia Carvalho Gindri ◽  
Bruna Mion ◽  
Ferronato Giuliana de Ávila ◽  
Antônio Amaral Barbosa ◽  
...  

The aim of this study was to evaluate the effect of exposing bovine oocytes to lipopolysaccharides (LPS) in vivo and in vitro on early embryo development. In experiment 1, cumulus oocyte complexes (COCs, n = 700/group) were challenged with 0, 0.1, 1.0 or 5.0 μg/mL of LPS during in vitro maturation (IVM). Later, in vitro fertilization (IVF) and in vitro culture (IVC) were performed. In experiment 2, COCs (n = 200/group) matured and in vitro fertilized without LPS were subjected to IVC with the same doses of LPS from experiment 1. In experiment 3, heifers received two injections of saline solution (n = 8) or 0.5 μg/kg of LPS (n = 8) 24 h apart, and 3 days later, COCs were recovered and submitted to IVM, IVF, and IVC. In experiments 1 and 3, the expression of TLR4, TNF, AREG and EREG genes in cumulus cells was evaluated. Exposure to 1 and 5 μg/mL of LPS during IVM decreased nuclear maturation (39.4 and 39.6%, respectively) compared with control (63.6%, P < 0.05). Despite that, no effect on cleavage and blastocyst rates were observed. Exposure to LPS during IVC did not affect embryonic development. In vivo exposure to LPS decreased the in vitro cleavage rate (54.3 vs 70.2%, P = 0.032), but cleaved embryos developed normally. Number of cells per embryo and gene expression were not affected by the LPS challenge in any experiment. In conclusion, although in vitro exposure to LPS did not affect early embryo development, in vivo LPS exposure reduced cleavage rate.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Daohong He ◽  
Guobo Han ◽  
Xiaomeng Zhang ◽  
Jingyu Sun ◽  
Yongnan Xu ◽  
...  

Summary Methomyl is a widely used carbamate insecticide and environmental oestrogen that has adverse effects on the reproductive system. However, there have been no reports on the effect of methomyl on early embryos in mammals. In this study, we explored the effect of methomyl exposure on the quality of early embryonic development in mice and the possible mechanisms. During in vitro culture, different concentrations of methomyl (10, 20, 30 and 35 μM) were added to mouse zygote medium. The results showed that methomyl had an adverse effect on early embryonic development. Compared with the control group, the addition of 30 μM methomyl significantly reduced the rate of early embryo blastocyst formation. Methomyl exposure can increase oxidative stress and impair mitochondrial function, which may be the cause of blastocyst formation. In addition, we found that methomyl exposure promoted apoptosis and autophagy in mouse blastocysts. The toxic effect of methomyl on early embryos may be the result of oxidative stress induction. Taken together, our results indicate that methomyl can cause embryonic development defects in mice, thereby reducing the quality of early embryo development.


2019 ◽  
Author(s):  
Isabel G&oacute;mez-Redondo ◽  
Priscila Ramos-Ibeas ◽  
Eva Pericuesta ◽  
Benjamín Planells ◽  
Raul Fernández-González ◽  
...  

2021 ◽  
Author(s):  
Zhen Sun ◽  
Hua Yu ◽  
Jing Zhao ◽  
Tianyu Tan ◽  
Hongru Pan ◽  
...  

AbstractLIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28’s role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.


2016 ◽  
Vol 27 (5) ◽  
pp. 768-775 ◽  
Author(s):  
Xue-Shan Ma ◽  
Fei Lin ◽  
Zhong-Wei Wang ◽  
Meng-Wen Hu ◽  
Lin Huang ◽  
...  

Geminin controls proper centrosome duplication, cell division, and differentiation. We investigated the function of geminin in oogenesis, fertilization, and early embryo development by deleting the geminin gene in oocytes from the primordial follicle stage. Oocyte-specific disruption of geminin results in low fertility in mice. Even though there was no evident anomaly of oogenesis, oocyte meiotic maturation, natural ovulation, or fertilization, early embryo development and implantation were impaired. The fertilized eggs derived from mutant mice showed developmental delay, and many were blocked at the late zygote stage. Cdt1 protein was decreased, whereas Chk1 and H2AX phosphorylation was increased, in fertilized eggs after geminin depletion. Our results suggest that disruption of maternal geminin may decrease Cdt1 expression and cause DNA rereplication, which then activates the cell cycle checkpoint and DNA damage repair and thus impairs early embryo development.


Sign in / Sign up

Export Citation Format

Share Document