scholarly journals Size Distribution and Water Soluble Ions of Ambient Particulate Matter on Episode and Non-episode Days in Southern Taiwan

2012 ◽  
Vol 12 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Jiun-Horng Tsai ◽  
Jian-Hung Lin ◽  
Yung-Chen Yao ◽  
Hung-Lung Chiang
Author(s):  
Shuang Wang ◽  
Mandeep Kaur ◽  
Tengfei Li ◽  
Feng Pan

The present study was planned to explore the pollution characteristics, health risks, and influence of atmospheric fine particulate matter (PM2.5) and its components on blood routine parameters in a typical industrial city (Xinxiang City) in China. In this study, 102 effective samples 28 (April–May), 19 (July–August), 27 (September–October), 28 (December–January) of PM2.5 were collected during different seasons from 2017 to 2018. The water-soluble ions and metal elements in PM2.5 were analyzed via ion chromatography and inductively coupled plasma–mass spectrometry. The blood routine physical examination parameters under different polluted weather conditions from January to December 2017 and 2018, the corresponding PM2.5 concentration, temperature, and relative humidity during the same period were collected from Second People’s Hospital of Xinxiang during 2017–2018. Risk assessment was carried out using the generalized additive time series model (GAM). It was used to analyze the influence of PM2.5 concentration and its components on blood routine indicators of the physical examination population. The “mgcv” package in R.3.5.3 statistical software was used for modeling and analysis and used to perform nonparametric smoothing on meteorological indicators such as temperature and humidity. When Akaike’s information criterion (AIC) value is the smallest, the goodness of fit of the model is the highest. Additionally, the US EPA exposure model was used to evaluate the health risks caused by different heavy metals in PM2.5 to the human body through the respiratory pathway, including carcinogenic risk and non-carcinogenic risk. The result showed that the air particulate matter and its chemical components in Xinxiang City were higher in winter as compared to other seasons with an overall trend of winter > spring > autumn > summer. The content of nitrate (NO3−) and sulfate (SO42−) ions in the atmosphere were higher in winter, which, together with ammonium, constitute the main components of water-soluble ions in PM2.5 in Xinxiang City. Source analysis reported that mobile pollution sources (coal combustion emissions, automobile exhaust emissions, and industrial emissions) in Xinxiang City during the winter season contributed more to atmospheric pollution as compared to fixed sources. The results of the risk assessment showed that the non-carcinogenic health risk of heavy metals in fine particulate matter is acceptable to the human body, while among the carcinogenic elements, the order of lifetime carcinogenic risk is arsenic (As) > chromium(Cr) > cadmium (Cd) > cobalt(Co) > nickel (Ni). During periods of haze pollution, the exposure concentration of PM2.5 has a certain lag effect on blood routine parameters. On the day when haze pollution occurs, when the daily average concentration of PM2.5 rises by 10 μg·m−3, hemoglobin (HGB) and platelet count (PLT) increase, respectively, by 9.923% (95% CI, 8.741–11.264) and 0.068% (95% CI, 0.067–0.069). GAM model analysis predicted the maximum effect of PM2.5 exposure concentration on red blood cell count (RBC) and PLT was reached when the hysteresis accumulates for 1d (Lag0). The maximum effect of exposure concentration ofPM2.5 on MONO is reached when the lag accumulation is 3d (Lag2). When the hysteresis accumulates for 6d (Lag5), the exposure concentration of PM2.5 has the greatest effect on HGB. The maximum cumulative effect of PM2.5 on neutrophil count (NEUT) and lymphocyte (LMY) was strongest when the lag was 2d (Lag1). During periods of moderate to severe pollution, the concentration of water-soluble ions and heavy metal elements in PM2.5 increases significantly and has a significant correlation with some blood routine indicators.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Ankang Liu ◽  
Honglei Wang ◽  
Yi Cui ◽  
Lijuan Shen ◽  
Yan Yin ◽  
...  

Particle size distribution, water soluble ions, and black carbon (BC) concentration in a long-term haze-fog episode were measured using a wide-range particle spectrometer (WPS), a monitor for aerosols and gases (MARGA), and an aethalometer (AE33) in Nanjing from 16 to 27 November, 2018. The observation included five processes of clean, mist, mix, haze, and fog. Combined with meteorological elements, the HYSPLIT model, and the IMPROVE model, we analyzed the particle size distribution, chemical composition, and optical properties of aerosols in different processes. The particle number size distribution (PNSD) in five processes differed: It was bimodal in mist and fog and unimodal in clean, mix, and haze. The particle surface area size distribution (PSSD) in different processes showed a bimodal distribution, and the second peak of the mix and fog processes shifted to a larger particle size at 480 nm. The dominant air masses in five processes differed and primarily originated in the northeast direction in the clean process and the southeast direction in the haze process. In the mist, mix, and fog processes local air masses dominated. NO3− was the primary component of water soluble ions, with the lowest proportion of 45.6% in the clean process and the highest proportion of 53.0% in the mix process. The ratio of NH4+ in the different processes was stable at approximately 23%. The ratio of SO42− in the clean process was 26.2%, and the ratio of other processes was approximately 20%. The average concentration of BC in the fog processes was 10,119 ng·m−3, which was 3.55, 1.80, 1.60, and 1.46 times that in the processes of clean, mist, mix, and haze, respectively. In the different processes, BC was primarily based on liquid fuel combustion. NO3−, SO42−, and BC were the main contributors to the atmospheric extinction coefficient and contributed more than 90% in different processes. NO3− contributed 398.43 Mm−1 in the mix process, and SO42− and BC contributed 167.90 Mm−1 and 101.19 Mm−1, respectively, during the fog process.


2011 ◽  
Vol 45 (12) ◽  
pp. 2043-2049 ◽  
Author(s):  
N. Galindo ◽  
E. Yubero ◽  
J.F. Nicolás ◽  
J. Crespo ◽  
C. Pastor ◽  
...  

2021 ◽  
Author(s):  
Hyemin Park ◽  
Minjune Yang

<p>This study investigated the wet deposition of particulate matter (PM) for six precipitation events at Daeyeon dong, Busan, South Korea, from February 2020 to July 2020. The concentration of PM<sub>10</sub> in the atmosphere was steadily measured before and after the precipitation. Rainwater samples were collected every 50 mL of each precipitation event using rainwater collecting devices and rainwater qualities (pH, electrical conductivity (EC), water-soluble ions (SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>, etc.) were analyzed. For heavy rain events with strong rainfall intensities (>7.5 mm/h), the average PM<sub>10</sub> reduction efficiency reached more than 68%. For the relatively weak (<5 mm/h) rainfall intensities, the PM<sub>10</sub> reduction efficiencies were less than 40%. In all rainfall events, the average rainwater pH gradually increased over time from 4.3 to 5.0, while the average EC decreased from 81.9 to 12.1 µS/cm. The concentrations of all ions in the rainwater samples gradually decreased during precipitation. For heavy rain events, the acidity, EC, and concentrations of total water-soluble ions of initial rainwater samples were higher than those of later samples. This result indicates that the concentration of PM<sub>10</sub> in the atmosphere was reduced by wet deposition.</p>


Sign in / Sign up

Export Citation Format

Share Document