scholarly journals Laser-Plasma Deposition of Silicon Carbonitride Films by the HMDS Vapor Gas Flow Activation after a Laser Beam Focus

2021 ◽  
Vol 11 (07) ◽  
pp. 121-130
Author(s):  
V. N. Demin ◽  
V. O. Borisov ◽  
G. N. Grachev ◽  
A. L. Smirnov ◽  
M. N. Khomyakov ◽  
...  
2015 ◽  
Vol 41 (2) ◽  
pp. 232-236 ◽  
Author(s):  
V. N. Demin ◽  
T. P. Smirnova ◽  
V. O. Borisov ◽  
G. N. Grachev ◽  
A. L. Smirnov ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seok-Ho Maeng ◽  
Hakju Lee ◽  
Min Soo Park ◽  
Suhyun Park ◽  
Jaeki Jeong ◽  
...  

AbstractWe report the extraction of silicon via a carbothermal reduction process using a CO2 laser beam as a heat source. The surface of a mixture of silica and carbon black powder became brown after laser beam irradiation for a few tens of seconds, and clear peaks of crystalline silicon were observed by Raman shift measurements, confirming the successful carbothermal reduction of silica. The influence of process parameters, including the laser beam intensity, radiation time, nitrogen gas flow in a reaction chamber, and the molar ratios of silica/carbon black of the mixture, on the carbothermal reduction process is explained in detail.


1986 ◽  
Vol 75 ◽  
Author(s):  
Harold M. Anderson ◽  
Philip J. Hargis

AbstractA model for dendrite growths in polycrystalline Si films formed during laser/plasma deposition with a silane discharge and a pulsed KrF laser has been developed. The model assumes a thin (less than 10 nm) amorphous silicon (a-Si) film is deposited on a substrate prior to phase transformation due to laser heating. The observed dendritic structure of the overall polycrystalline Si films is attributed to Si crystals shooting from an excessively supercooled Si liquid bath. Supercooled liquid forms since the melting point for a-Si can be reached at relatively low KrF laser fluences. Latent heat evolved at the solid-liquid interface induces an interface temperature higher than that of the melt and the requisite negative temperature gradient for absolute bath supercooling. Since the formation of an undercooled liquid by fast melting a-Si is also an important first step in explosive crystal regrowth studies, these results may have important implications for crystal growth and transient annealing. A conical approximation model is used in this study to characterize the stability of the dendrite tip in terms of local temperature gradients, i.e., the degree of undercooling at the tip of the parabolic dendrite. The degree of undercooling and hence the tip radius appears to be significantly affected by small changes in the laser fluence. Stability criteria lead to a relationship between regrowth velocity, V, and the tip radius, R, of the form VR2= constant. The size and stability of the dendrite tip is determined from a balance between the destabilizing force due to thermal diffusion and the stabilizing capillary force. Based on the observed tip radii formed at laser fluences from 0.13 to 0.25 J/cm2, the model predicts regrowth velocities in a range between 2.0 and 20 m/s – values consistent with transient annealing studies of a-Si


1991 ◽  
Vol 236 ◽  
Author(s):  
S. Metev ◽  
K. Meteva

AbstractIn the paper the results of a theoretical investigation of the growth process of laser-plasma deposited thin films are discussed. A kinetic approach has been used to establish direct relation between experimental conditions (laser flux density, substrate temperature) and film properties (thickness, structure). The results of some experimental investigations of the deposition process are presented confirming the general conclusions of the developed theoretical model.


2000 ◽  
Vol 7 (8) ◽  
pp. 3388-3398 ◽  
Author(s):  
J. D. Moody ◽  
B. J. MacGowan ◽  
R. L. Berger ◽  
K. G. Estabrook ◽  
S. H. Glenzer ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 37
Author(s):  
Maksym Tryus ◽  
Filip Grepl ◽  
Timofej Chagovets ◽  
Andriy Velyhan ◽  
Lorenzo Giuffrida ◽  
...  

The TERESA (TEstbed for high REpetition-rate Sources of Accelerated particles) target area, recently commissioned with the L3-HAPLS laser at Extreme Light Infrastructure (ELI)-Beamlines, is presented. Its key technological sections (vacuum and control systems, laser parameters and laser beam transport up to the target) are described, along with an overview of the available plasma diagnostics and targetry, tested at relativistic laser intensities. Perspectives of the TERESA laser–plasma experimental area at ELI-Beamlines are briefly discussed.


1996 ◽  
Author(s):  
Leos Laska ◽  
Josef Krasa ◽  
Karel Masek ◽  
Bozena Kralikova ◽  
Tomas Mocek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document