scholarly journals A Short Growing Season Negatively Affects Progeny Vigor in Jointed Goatgrass (<i>Aegilops cylindrica</i>)

2015 ◽  
Vol 06 (03) ◽  
pp. 315-324
Author(s):  
Lynn M. Ingegneri ◽  
Michael P. Quinn ◽  
Andrew G. Hulting ◽  
Carol A. Mallory-Smith
Weed Science ◽  
1984 ◽  
Vol 32 (4) ◽  
pp. 489-493 ◽  
Author(s):  
Frank L. Young ◽  
David R. Gealy ◽  
Larry A. Morrow

In the greenhouse, glyphosate [N-(phosphonomethyl)glycine] at 0.6 kg ae/ha applied directly to seeds alone or seeds on the soil surface reduced germination and shoot dry weight of common rye (Secale cerealeL. ♯3SECCE). Paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) applied similarly at 0.6 kg ai/ha reduced germination and shoot dry weight of downy brome (Bromus tectorumL. ♯ BROTE) and wheat (Triticum aestivumL. ‘Daws' ♯ TRZAX). Metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5 (4H)-one] at 0.6 kg ai/ha applied to seeds, soil, or seeds and soil had very little effect on germination, but significantly reduced shoot dry weight of common rye, downy brome, wheat, and jointed goatgrass (Aegilops cylindricaHost. ♯ AEGCY). Pronamide [3,5-dichloro(N-1,1-dimethyl-2-propynyl)benzamide] at 0.6 kg ai/ha, and propham (isopropyl carbanilate) at 3.4 kg ai/ha plus extender (p-chlorophenyl-N-methylcarbamate) at 0.4 kg ai/ha substantially reduced shoot height and dry weight of all species, regardless of application method, with pronamide completely inhibiting shoot elongation and dry-weight production in three of the four species.


Weed Science ◽  
1998 ◽  
Vol 46 (3) ◽  
pp. 313-317 ◽  
Author(s):  
R. S. Zemetra ◽  
J. Hansen ◽  
C. A. Mallory-Smith

Jointed goatgrass is a major weed in the wheat-producing areas of the western U.S. It shares the D genome with wheat, and interspecific hybrids between the two species occur in the field. The objective of this research was to determine if wheat X jointed goatgrass hybrids could serve to transfer genes from wheat to jointed goatgrass. A backcrossing program was initiated in the greenhouse between wheat X jointed goatgrass hybrids and either jointed goatgrass or wheat to determine the potential for seed set and the restoration of self-fertility. Seed was set by backcrossing with either species as the recurrent parent. Female fertility increased from 2% in the hybrid to 37% in the BC2 plants with jointed goatgrass as the recurrent parent. Partial self-fertility was restored in the second backcross (BC2) generation using jointed goatgrass as the recurrent parent. This indicates that genes could be transferred between wheat and jointed goatgrass after only two backcrosses. The number of bivalents observed in the plants during meiosis appeared to be key to increasing female fertility and self-fertility. Based on the results of this study, it is possible for genes to move from wheat to jointed goatgrass. Any release of a herbicide-resistant wheat should be accompanied by a management plan that would minimize the potential for gene movement between these species.


1998 ◽  
Vol 90 (4) ◽  
pp. 489-495 ◽  
Author(s):  
Ignacio Madakadze ◽  
Bruce E. Coulman ◽  
K. Stewart ◽  
P. Peterson ◽  
R. Samson ◽  
...  

Genome ◽  
2000 ◽  
Vol 43 (6) ◽  
pp. 1038-1044 ◽  
Author(s):  
Z.N. Wang ◽  
A. Hang ◽  
J. Hansen ◽  
C. Burton ◽  
C.A. Mallory-Smith ◽  
...  

1999 ◽  
Vol 13 (2) ◽  
pp. 374-377 ◽  
Author(s):  
Abdel O. Mesbah ◽  
Stephen D. Miller

A 3-yr study was conducted in eastern Wyoming from 1995 to 1997 to evaluate the effect of fertilizer placement on jointed goatgrass competitiveness with winter wheat. Fertilizer placement methods consisted of applying 45 kg/ha of nitrogen (50% as urea and 50% as ammonium nitrate) in a deep band 5 cm below and 2.5 cm to the side of the wheat row, broadcasting on the soil surface, or injecting fertilizer by spoke wheel 10 cm deep and 5 cm to the side of the wheat row. Neither fertilizer placement nor jointed goatgrass presence affected winter wheat stand. Wheat yield reductions from jointed goatgrass competition were 7 and 10% higher with the broadcast than deep-band or spoke-wheel injection methods, respectively. Wheat spikes/plant, seeds/spike, 200-seed weight, and plant height were not influenced by fertilizer placement; however, the presence of 35 jointed goatgrass plants/m2reduced spikes/plant 21%, seeds/spike 12%, and 200-seed weight 6%. Jointed goatgrass populations were not influenced by fertilizer placement method; however, the number of spikes/plant was reduced 8 and 10%, joints/spike 3%, and biomass 15 and 21% by deep band or spoke wheel fertilizer placement.


Weed Science ◽  
1989 ◽  
Vol 37 (4) ◽  
pp. 562-569 ◽  
Author(s):  
David R. Gealy

Gas exchange of jointed goatgrass leaves was affected by temperature, irradiance level, and soil matric potential. Net photosynthesis of leaves under saturating irradiance (PPFD3= 1850 (μE·m–2·s−1) was optimum at about 20 C. At 25 C, net photosynthesis was nearly 90% of maximum at a PPFD of 800 μE·m–2·−1. Transpiration, and presumably water use, increased steadily with temperature from 10 to 40 C. Dark respiration rate and compensation points for light and for CO2increased exponentially, or nearly so, from 10 to 40 C. Soil moisture deficits of −130 kPa reduced net photosynthesis and transpiration by about 30 and 55%, respectively, compared to well-watered plants.


Weed Science ◽  
1981 ◽  
Vol 29 (4) ◽  
pp. 382-386 ◽  
Author(s):  
J. A. Ivany

The herbicides glyphosate [N-(phosphonomethyl)glycine], hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione], and pronamide [3,5-dichloro(N-1,1-dimethyl-2-propynl)benzamide] were evaluated for effectiveness in quackgrass (Agropyron repensL. Beauv.) control when applied in the fall, a time that is desirable in a short-growing-season area such as Atlantic Canada. Glyphosate at 1.12 kg/ha applied to quackgrass in grain stubble gave good control. Glyphosate at 1.12 kg/ha in late October gave better control than the same rate applied in late September. At low rates of 0.56 and 1.12 kg/ha, glyphosate gave better quackgrass control when fall-applied than when spring-applied. No differences were noted between seasons at the 2.24-kg/ha rate of glyphosate. Pre-treatment with nitrogen at 35 kg/ha 30 or 15 days before application, or on the day of application, did not improve quackgrass control with glyphosate. Pronamide gave fair to good control. Hexazinone at 2.24, 4.48, or 6.72 kg/ha gave poor control when fall-applied, but excellent control when spring-applied.


Weed Science ◽  
1998 ◽  
Vol 46 (6) ◽  
pp. 632-634 ◽  
Author(s):  
Steven S. Seefeldt ◽  
Robert Zemetra ◽  
Frank L. Young ◽  
Stephen S. Jones

Imazamox-resistant hybrids resulted from a cross between jointed goatgrass and an imazamox-resistant wheat (cv. FS-4 IR wheat). Two imazamox-resistant hybrids were discovered in a research plot where FS-4 IR wheat seed had been replanted from the harvest of an imazamox efficacy study conducted the year before at a different location. These hybrid plants survived imazamox applied at 0.053 and 0.069 kg ai ha−1in the field and produced seven viable seeds (BC1). This seed germinated, and chromosomes were counted from the roots (2N number ranged from 39 to 54). In the greenhouse, six of the seven plants survived an application of 0.072 kg ai ha−1imazamox, which confirmed that the resistance trait had been passed to these progeny. A large amount of phenotypic variation was observed in the mature BC1plants. A genetic description of the movement of the resistant gene is proposed based on the case of the gene being located on the D and the A or B genomes. Management strategies to reduce the occurrence of herbicide-resistant hybrids are presented.


Sign in / Sign up

Export Citation Format

Share Document