scholarly journals Impact of the Presence of the Loop at Different Location on Fabric Width and Areal Density of a Weft Knitted Structure

2021 ◽  
Vol 07 (01) ◽  
pp. 55-65
Author(s):  
Zubair Bin Sayed ◽  
Nusrat Jahan ◽  
Shabrina Kabir
2021 ◽  
Vol 92 (5) ◽  
pp. 053901
Author(s):  
Camelia V. Stan ◽  
Alison M. Saunders ◽  
Matthew P. Hill ◽  
Tom Lockard ◽  
Kyle Mackay ◽  
...  

2021 ◽  
Vol 28 (4) ◽  
pp. 042708
Author(s):  
D. T. Casey ◽  
O. L. Landen ◽  
E. Hartouni ◽  
R. M. Bionta ◽  
K. D. Hahn ◽  
...  

1999 ◽  
Vol 560 ◽  
Author(s):  
Lily H. Zhang ◽  
Larry Wang ◽  
Wusheng Tong ◽  
YongBao Xin

ABSTRACTThis study has used secondary ion mass spectrometry (SIMS) as a technique for thin film EL material characterization. It has shown that the Cu dopant concentration in the SrS films directly correlates with the luminescent brightness of the EL devices. A series of SrS:Cu,Y were grown using MBE to study the Y co-doping effects. It has been found that Y peak concentration and areal density in the SrS increased as the Y evaporation cell temperature was increased. The maximum PL intensity was found in the sample grown in the middle of the Y cell temperature range used. The Y co-doping has shown to reduce the thermal quenching effects in SrS EL devices. Therefore, in this series of samples, a good correlation has been found between Y and Cu concentration and the EL device performance characteristics.


2021 ◽  
pp. 152808372110013
Author(s):  
Vivek R Jayan ◽  
Lekhani Tripathi ◽  
Promoda Kumar Behera ◽  
Michal Petru ◽  
BK Behera

The internal geometry of composite material is one of the most important factors that influence its performance and service life. A new approach is proposed for the prediction of internal geometry and tensile behavior of the 3 D (three dimensional) woven fabrics by creating the unit cell using mathematical coding. In many technical applications, textile materials are subjected to rates of loading or straining that may be much greater in magnitude than the regular household applications of these materials. The main aim of this study is to provide a generalized method for all the structures. By mathematical coding, unit cells of 3 D woven orthogonal, warp interlock and angle interlock structures have been created. The study then focuses on developing code to analyze the geometrical parameters of the fabric like fabric thickness, areal density, and fiber volume fraction. Then, the tensile behavior of the coded 3 D structures is studied in Ansys platform and the results are compared with experimental values for authentication of geometrical parameters as well as for tensile behavior. The results show that the mathematical coding approach is a more efficient modeling technique with an acceptable error percentage.


2009 ◽  
Vol 154 ◽  
pp. 95-100 ◽  
Author(s):  
Seiichi Miyazaki ◽  
Mitsuhisa Ikeda ◽  
Katsunori Makihara ◽  
K. Shimanoe ◽  
R. Matsumoto

We demonstrated a new fabrication method of Pt- and Ni-silicide nanodots with an areal density of the order of ~1011 cm-2 on SiO2 through the process steps of ultrathin metal film deposition on pre-grown Si-QDs and subsequent remote H2 plasma treatments at room temperature. Verification of electrical separation among silicide nanodots was made by measuring surface potential changes due to electron injection and extraction using an AFM/Kelvin probe technique. Photoemission measurements confirm a deeper potential well of silicide nanodots than Si-QDs and a resultant superior charge retention was also verified by surface potential measurements after charging to and discharging. Also, the advantage in many electron storage per silicide nanodot was demonstrated in C-V characteristics of MIS capacitors with silicide nanodots FGs.


Nano Letters ◽  
2008 ◽  
Vol 8 (11) ◽  
pp. 3587-3593 ◽  
Author(s):  
Gilbert D. Nessim ◽  
A. John Hart ◽  
Jin S. Kim ◽  
Donatello Acquaviva ◽  
Jihun Oh ◽  
...  

MRS Bulletin ◽  
1990 ◽  
Vol 15 (3) ◽  
pp. 45-52 ◽  
Author(s):  
A.M. Homola ◽  
C.M. Mate ◽  
G.B. Street

Metallic alloy thin film media and ever decreasing head-to-media spacing make severe demands on storage devices. Decreasing head-to-media separation is critical for high storage densities but it also leads to increased slider-disk interactions, which can cause slider and disk wear or even head crashes. Wear can also occur when drives start and stop when the slider contacts the disk at relatively high speeds. The reliability and durability of thin film disks, which provide much higher areal density than conventional oxide disks with particulate media, are achieved by the use of very thin overcoat materials and surface lubricants. This article summarizes the approaches taken in the industry to enhance the tribological performance of magnetic media, with special emphasis on the basic understanding of the processes occurring at the slider-disk interface.The continuous rise in the demand for storage capacity at a competitive price is the prime motivator of the changes we have seen in the data storage industry. It is clearly stimulating the present move away from particulate media, which has long dominated all fields of data storage, i.e., tape, rigid, and flexible disks, to the thin film storage media. Particulate storage devices use magnetic media formulated by dispersing magnetic particles, usually iron oxides, in an organic binder. In thin film storage devices, the storage medium is a continuous magnetic film, usually a cobalt alloy, made either by sputtering or by electroless plating.


2021 ◽  
pp. 089270572110420
Author(s):  
Bazle Z (Gama) Haque ◽  
John W Gillespie

Soft-ballistic sub-laminate (SBSL) made from ultra-high molecular weight polyethylene (UHMWPE) fibers in [0/90] stacking sequence are the building block of a multi-layer soft-ballistic armor pack (SBAP, aka Soft Armor). A systematic study of the perforation dynamics of a single layer SBSL and several multi-layer SBAPs (2, 3, 4, 8, 16, 24, 32 layers) is presented for the first time in the literature. A previously validated finite element model of transverse impact on a single layer is used to study the perforation mechanics of multi-layer SBAPs with friction between individual layers. Following the classical definition of ballistic limit velocity, a minimum perforation velocity has been determined for free-standing single layer SBSL and multi-layer SBAPs. For the multi-layer SBAPs, complete perforations have been identified as progressive perforation of individual layers through the thickness. The minimum perforation velocities of multi-layer SBAPS is linear with the areal density for the eight (8) layer target and thicker. Large deformation behavior and perforation mechanics of the SBAPs is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document