scholarly journals The Impacts of Building Regulations on the Thermal Performance and Energy Consumption of Residential Buildings in Riyadh City-Saudi Arabia

2021 ◽  
Vol 10 (01) ◽  
pp. 1-21
Author(s):  
Saleh Baharetha ◽  
Elsayed Amer ◽  
Mohammad Kotbi
2020 ◽  
pp. 014459872097514
Author(s):  
AbdulRahman S Almushaikah ◽  
Radwan A Almasri

Lately, with the growth in energy consumption worldwide to support global efforts to improve the climate, developing nations have to take significant measures. Kingdom of Saudi Arabia (KSA) implemented meaningful policy actions towards promoting energy efficiency (EE) in several sectors, especially in the building sector, to be more sustainable. In this paper, various EE measures and solar energy prospects are investigated for the residential sector, in two locations in the middle region of the KSA. An energy performance analysis of pre-existing residential buildings with an overall design is performed using simulation programs. However, installing EE measures in the building envelope is important to achieve an efficient sector regarding its energy consumption. The findings showed that applying EE measures for the building envelope, walls, roof, and windows should be considered first that makes the energy conservation possible. In Riyadh, EE measures are responsible for reducing energy consumption by 27% for walls, 14% for roof, and 6% for window, and by 29%, 13%, and 6% for walls, roof, and windows, respectively, for Qassim. However, the most impactful EE solution was selecting a heating, ventilation, and air conditioning (HVAC) system with a high energy efficiency rate (EER), which can minimize the energy consumption by 33% and 32% for Riyadh and Qassim, respectively. The study's feasibility showed that the number of years needed to offset the initial investment for a proposed roof PV system exceeds the project's life, if the energy produced is exported to the grid at the official export tariff of 0.019 $/kWh. However, the simple payback time was 13.42 years if the energy produced is exported to the grid at a rate of 0.048 $/kWh, reflecting the project's economic feasibility.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5836
Author(s):  
Ali Mohammed AL-Dossary ◽  
Daeung Danny Kim

In Saudi Arabia, residential buildings are one of the major contributors to total energy consumption. Even though there are abundant natural resources, it is somewhat difficult to apply them to building designs, as design variables, due to slow progress and private issues in Saudi Arabia. Thus, the present study demonstrated the development of sustainable residential building design by examining the daylighting and energy performance with design variables. Focusing on the daylighting system, the design variables were chosen, including window-to-wall ratios (WWR), external shading devices, and types of glazing. The illuminance level by these design variables in a building was evaluated by using daylight metrics, such as spatial daylight autonomy and annual sunlight exposure. Moreover, the building energy consumption with these design variables was analyzed by using energy simulation. As a result, the daylighting was improved with the increase in WWRs and the tinted double glazing, while these design options can cause overheating in a residential building. Among types of glazing, the double pane windows with a low-E coating showed better energy performance. Based on the results, it is necessary to find the proper design variables that can balance the daylighting and energy performance in residential buildings in hot climates.


2020 ◽  
Vol 15 (4) ◽  
pp. 555-564
Author(s):  
Laila Amer Hashem Al-Qahtani ◽  
Lamis Saad Eldeen Elgizawi

Abstract Around the world, most energy is consumed by buildings; residential buildings consume 40% of energy globally. In the Kingdom of Saudi Arabia (KSA), buildings consume 50% of all energy, and 70% of the buildings in the KSA are not insulated well. Creating an envelope is a key to decreasing energy consumption and providing thermal comfort and healthy internal spaces. Thus, the main aim of this study is to test the effect of selected passive cooling strategies by using a simulation program to evaluate a variety of envelope (floor, external and internal walls and roofs) thermal characteristic proposals to create an eco-interior space, to provide the most comfortable conditions for users and to save energy in buildings in hot climates in Riyadh, Saudi Arabia. One residential building case was selected, and some of the passive cooling strategies were tested. Simulation software—Design Builder—was used to calculate the total energy consumption in 1 year and compare the results before and after applying these strategies to the selected residential building.


2020 ◽  
Vol 13 (1) ◽  
pp. 179
Author(s):  
Mohammad B. Hamida ◽  
Wahhaj Ahmed ◽  
Muhammad Asif ◽  
Faris Abdullah Almaziad

The buildings and construction sector accounts for the majority of the energy consumption in the Kingdom of Saudi Arabia (KSA). For a sustainable future, energy consumption in the sector should be reduced and existing buildings need to be energy retrofitted. A number of studies present energy retrofitting of residential buildings in KSA; however, there is a lack of studies presenting retrofitting of educational buildings. Thus, the aim of this study is to adopt a BIM-based approach to assess Energy Conservation Measures (ECMs) in a prototypical Government-built educational building in Dammam, KSA. The methodology consists of six prime steps, (1) case study data collection, (2) energy auditing, (3) proposing ECMs, (4) BIM model development, (5) energy assessment, and (6) economic assessment. The energy audit revealed several inefficiencies in the building construction and operation and four ECMs were proposed and simulated. It was found that annual energy consumption can be reduced by 22.7% in the educational building, and the investment for the four ECMs is paid back in 2.7 years only. Therefore, implementing the proposed ECMs is a viable option to energy retrofit such educational buildings in the country, and the presented BIM-based approach can be adopted to efficiently conduct the energy retrofitting process.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 87 ◽  
Author(s):  
Jubran Alshahrani ◽  
Peter Boait

Electricity consumption in the Kingdom of Saudi Arabia (KSA) has grown at an annual rate of about 7% as a result of population and economic growth. The consumption of the residential sector accounts for over 50% of the total energy generation. Moreover, the energy consumption of air-conditioning (AC) systems has become 70% of residential buildings’ total electricity consumption in the summer months, leading to a high peak electricity demand. This study investigates solutions that will tackle the problem of high energy demand associated with KSA’s air-conditioning needs in residential buildings. To reduce the AC energy consumption in the residential sector, we propose the use of smart control in the thermostat settings. Smart control can be utilized by (i) scheduling and advance control of the operation of AC systems and (ii) remotely setting the thermostats appropriately by the utilities. In this study, we model typical residential buildings and, crucially, occupancy behavior based on behavioral data obtained through a survey. The potential impacts in terms of achievable electricity savings of different AC operation modes for residential houses of Riyadh city are presented. The results from our computer simulations show that the solutions intended to reduce energy consumption effectively, particularly in the advance mode of operation, resulted in a 30% to 40% increase in total annual energy savings.


Author(s):  
Alaa Alaidroos ◽  
Moncef Krarti

In this paper, passive cooling strategies have been investigated to evaluate their effectiveness in reducing cooling thermal loads and air conditioning energy consumption for residential buildings in Kingdom of Saudi Arabia (KSA). Specifically, three passive cooling techniques have been evaluated including: natural ventilation, downdraft evaporative cooling, and earth tube cooling. These passive cooling systems are applied to a prototypical KSA residential villa model with an improved building envelope. The analysis has been carried using detailed simulation tool for several cities representing different climate conditions throughout KSA. It is found that both natural ventilation and evaporative cooling provide a significant reduction in cooling energy for the prototypical villa located in Riyadh. Natural ventilation alone has reduced the cooling energy end-use by 22% and the total villa energy consumption by 10%, while the evaporative cooling system has resulted in 64% savings in cooling energy end-use and 32% in the total villa energy consumption. When applying both passive cooling systems together to the villa, the cooling energy end-use is significantly reduced by about 84.2% and the total villa energy savings by 62.3% relative to the un-insulated basecase residential building model. Moreover, natural ventilation is found to have a high potential in all KSA climates, while evaporative cooling can be suitable only in hot and dry climates such as Riyadh and Tabuk.


2020 ◽  
Vol 42 (1) ◽  
pp. 45-61
Author(s):  
Daeung Danny Kim

In general, a double-skin façade has been used to reduce energy consumption as well as to improve thermal performance in buildings as a buffer space between indoors and outdoors. The goal of this study is to undertake pre-normative research to provide information for developing a comprehensive double-skin façade system under the climatic condition in Saudi Arabia. To pursue this goal, the characteristics associated with the double-skin façade system are identified. In addition, the impact of various configurations on the thermal performance of the double-skin façades is evaluated under the weather situation in Saudi Arabia. Computational double-skin façade models are created by computational fluid dnamics simulation to assess the thermal performance of the various configurations such as cavity geometry and the use of a shading device. As a result, the variation of the opening size has a significant impact on the temperature in the cavity of the double-skin façade. For the air velocity in the cavity, the variation of the opening size and cavity depth is less sensitive. Moreover, the use of a shading device has an impact on the temperature drop in the cavity of the double-skin façade. Practical application: Generally, many studies have investigated the efficiency of double-skin façade applications due to its beneficial aspects. However, a few buildings have adopted double-skin façades to their envelopes. With a substantial growing demand for building industry in Saudi Arabia, double-skin façade applications to building design can be a solution for reducing building energy consumption. The present study investigates the thermal performance of double-skin façades under hot climates in Saudi Arabia and it can provide information for building stakeholders to develop proper double-skin façade systems


2021 ◽  
Vol 1 (1) ◽  
pp. 129-137
Author(s):  
Sanjaya Uprety ◽  
Shiva Kafley ◽  
Barsha Shrestha

The orientation and glazed surface area used for windows in a building have significant effects on its indoor thermal comfort and overall energy consumption. The increasing use of glazed windows and lack of consideration of orientation in building design have become a major problem in warm and humid regions as windows cover sensitive skin areas for the exchange of energy leading to increased solar gain inside the building. This paper describes the effect of the varied ‘area ratio of glazed window to the wall for different building orientations’ on the thermal performance of the residential building in a warm humid climatic region of Nepal. A typical residential building located in Kalikanagr of Butwal, the fast-urbanizing sub-metropolis of Western Nepal, was selected for the study from 18 houses surveyed using the purposive sampling method. Nine varying values of Window to Wall Ratio (WWR) of glazed façade ranging from 0.1 to 0.9 with a constant increment of 0.1 in north and south façades, and the change in the building orientations were considered for the detailed study. Altogether eighty different test scenarios including base case scenarios were created and annual thermal energy consumption was computed for each test scenario using the Autodesk Ecotect Analysis, 2011. Findings from the study showed that the south orientation is the most appropriate compared to the north-east for all WWR to reduce the building energy consumption and an increase in WWR also results in increased energy consumption. The study concludes the careful considerations of WWR and the south orientation during the designing of building will contribute to efficient energy consumption in residential buildings.


Sign in / Sign up

Export Citation Format

Share Document