scholarly journals Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy

2021 ◽  
Vol 13 (12) ◽  
pp. 1863-1880
Author(s):  
Ivana Okić-Đorđević ◽  
Hristina Obradović ◽  
Tamara Kukolj ◽  
Anđelija Petrović ◽  
Slavko Mojsilović ◽  
...  
Author(s):  
Basem M. Abdallah ◽  
Hany M. Khattab

: The isolation and culture of murine bone marrow-derived mesenchymal stromal stem cells (mBMSCs) have attracted great interest in terms of the pre-clinical applications of stem cells in tissue engineering and regenerative medicine. In addition, culturing mBMSCs is important for studying the molecular mechanisms of bone remodelling using relevant transgenic mice. Several factors have created challenges in the isolation and high-yield expansion of homogenous mBMSCs; these factors include low frequencies of bone marrow-derived mesenchymal stromal stem cells (BMSCs) in bone marrow, variation among inbred mouse strains, contamination with haematopoietic progenitor cells (HPCs), the replicative senescence phenotype and cellular heterogeneity. In this review, we provide an overview of nearly all protocols used for isolating and culturing mBMSCs with the aim of clarifying the most important guidelines for culturing highly purified mBMSC populations retaining in vitro and in vivo differentiation potential.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gertraud Eylert ◽  
Reinhard Dolp ◽  
Alexandra Parousis ◽  
Richard Cheng ◽  
Christopher Auger ◽  
...  

Abstract Background Multipotent mesenchymal stromal/stem cell (MSC) therapy is under investigation in promising (pre-)clinical trials for wound healing, which is crucial for survival; however, the optimal cell dosage remains unknown. The aim was to investigate the efficacy of different low-to-high MSC dosages incorporated in a biodegradable collagen-based dermal regeneration template (DRT) Integra®. Methods We conducted a porcine study (N = 8 Yorkshire pigs) and seeded between 200 and 2,000,000 cells/cm2 of umbilical cord mesenchymal stromal/stem cells on the DRT and grafted it onto full-thickness burn excised wounds. On day 28, comparisons were made between the different low-to-high cell dose groups, the acellular control, a burn wound, and healthy skin. Result We found that the low dose range between 200 and 40,000 cells/cm2 regenerates the full-thickness burn excised wounds most efficaciously, followed by the middle dose range of 200,000–400,000 cells/cm2 and a high dose of 2,000,000 cells/cm2. The low dose of 40,000 cells/cm2 accelerated reepithelialization, reduced scarring, regenerated epidermal thickness superiorly, enhanced neovascularization, reduced fibrosis, and reduced type 1 and type 2 macrophages compared to other cell dosages and the acellular control. Conclusion This regenerative cell therapy study using MSCs shows efficacy toward a low dose, which changes the paradigm that more cells lead to better wound healing outcome.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169504 ◽  
Author(s):  
Chiara E. Ghezzi ◽  
Benedetto Marelli ◽  
Fiorenzo G. Omenetto ◽  
James L. Funderburgh ◽  
David L. Kaplan

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 750
Author(s):  
Pasquale Marrazzo ◽  
Valeria Pizzuti ◽  
Silvia Zia ◽  
Azzurra Sargenti ◽  
Daniele Gazzola ◽  
...  

Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing-zhou Xue ◽  
Wei Xiang ◽  
Qing Zhang ◽  
Hao-fei Wang ◽  
Yu-jie Zhou ◽  
...  

Abstract Background The tumour microenvironment contributes to chemotherapy resistance in gliomas, and glioma-associated mesenchymal stromal/stem cells (gaMSCs) are important stromal cell components that play multiple roles in tumour progression. However, whether gaMSCs affect chemotherapy resistance to the first-line agent temozolomide (TMZ) remains unclear. Herein, we explored the effect and mechanism of gaMSCs on resistance to TMZ in glioma cells. Methods Human glioma cells (cell line U87MG and primary glioblastoma cell line GBM-1) were cultured in conditioned media of gaMSCs and further treated with TMZ. The proliferation, apoptosis and migration of glioma cells were detected by Cell Counting Kit-8 (CCK-8), flow cytometry and wound-healing assays. The expression of FOXS1 in glioma cells was analysed by gene microarray, PCR and Western blotting. Then, FOXS1 expression in glioma cells was up- and downregulated by lentivirus transfection, and markers of the epithelial-mesenchymal transformation (EMT) process were detected. Tumour-bearing nude mice were established with different glioma cells and treated with TMZ to measure tumour size, survival time and Ki-67 expression. Finally, the expression of IL-6 in gaMSC subpopulations and its effects on FOXS1 expression in glioma cells were also investigated. Results Conditioned media of gaMSCs promoted the proliferation, migration and chemotherapy resistance of glioma cells. The increased expression of FOXS1 and activation of the EMT process in glioma cells under gaMSC-conditioned media were detected. The relationship of FOXS1, EMT and chemotherapy resistance in glioma cells was demonstrated through the regulation of FOXS1 expression in vitro and in vivo. Moreover, FOXS1 expression in glioma cells was increased by secretion of IL-6 mainly from the CD90low gaMSC subpopulation. Conclusions CD90low gaMSCs could increase FOXS1 expression in glioma cells by IL-6 secretion, thereby activating epithelial-mesenchymal transition and resistance to TMZ in glioma cells. These results indicate a new role of gaMSCs in chemotherapy resistance and provide novel therapeutic targets.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shinji Hayashi ◽  
Rieko Yagi ◽  
Shuhei Taniguchi ◽  
Masami Uji ◽  
Hidaka Urano ◽  
...  

AbstractCell-assisted lipotransfer (CAL) is an advanced lipoinjection method that uses autologous lipotransfer with addition of a stromal vascular fraction (SVF) containing adipose-derived stromal stem cells (ASCs). The CAL procedure of manual isolation of cells from fat requires cell processing to be performed in clean environment. To isolate cells from fat without the need for a cell processing center, such as in a procedure in an operation theater, we developed a novel method for processing SVF using a closed cell washing concentration device (CCD) with a hollow fiber membrane module. The CCD consists of a sterilized closed circuit, bags and hollow fiber, semi-automatic device and the device allows removal of >99.97% of collagenase from SVF while maintaining sterility. The number of nucleated cells, ASCs and viability in SVF processed by this method were equivalent to those in SVF processed using conventional manual isolation. Our results suggest that the CCD system is as reliable as manual isolation and may also be useful for CAL. This approach will help in the development of regenerative medicine at clinics without a cell processing center.


Author(s):  
Mariane Izabella Melo ◽  
Pricila Cunha ◽  
Marcelo de Miranda ◽  
Camila Cristina Fraga Faraco ◽  
Joana Lobato Barbosa ◽  
...  

2010 ◽  
Vol 24 (3) ◽  
pp. 526-539 ◽  
Author(s):  
Séverine Kirchner ◽  
Tiffany Kieu ◽  
Connie Chow ◽  
Stephanie Casey ◽  
Bruce Blumberg

Abstract The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARγ activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARγ antagonists, suggesting that activation of PPARγ mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARγ target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time.


Sign in / Sign up

Export Citation Format

Share Document