scholarly journals Weldability in High Pressure Nitrogen Atmosphere and Mechanical Property of Weld Metal of Austenitic Stainless Steel

DENKI-SEIKO ◽  
2004 ◽  
Vol 75 (4) ◽  
pp. 253-260
Author(s):  
Osamu Kamiya
2006 ◽  
Vol 524-525 ◽  
pp. 697-702 ◽  
Author(s):  
Shinobu Okido ◽  
Hiroshi Suzuki ◽  
K. Saito

Residual stress generated in Type-316 austenitic stainless steel butt-weld jointed by Inconel-182 was measured using a neutron diffraction method and compared with values calculated using FEM analysis. The measured values of Type-316 austenitic stainless steel as base material agreed well with the calculated ones. The diffraction had high intensity and a sharp profile in the base metal. However, it was difficult to measure the residual stress at the weld metal due to very weak diffraction intensities. This phenomenon was caused by the texture in the weld material generated during the weld procedure. As a result, this texture induced an inaccurate evaluation of the residual stress. Procedures for residual stress evaluation to solve this textured material problem are discussed in this paper. As a method for stress evaluation, the measured strains obtained from a different diffraction plane with strong intensity were modified with the ratio of the individual elastic constant. The values of residual stress obtained using this method were almost the same as those of the standard method using Hooke’s law. Also, these residual stress values agreed roughly with those from the FEM analysis. This evaluation method is effective for measured samples with a strong texture like Ni-based weld metal.


2011 ◽  
Vol 239-242 ◽  
pp. 1300-1303
Author(s):  
Hong Cai Wang ◽  
Minoru Umemoto ◽  
Innocent Shuro ◽  
Yoshikazu Todaka ◽  
Ho Hung Kuo

SUS316L austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation from g®a¢. The largest volume fraction of 70% a¢ was obtained at 0.2 revolutions per minute (rpm) while was limited to 3% at 5rpm. Pre-straining of g by HPT at 5rpm decreases the volume fraction of a¢ obtained by HPT at 0.2rpm. By HPT at 5rpm, a¢®g reverse transformation was observed for a¢ produced by HPT at 0.2rpm.


Author(s):  
Harris Prabowo ◽  
Badrul Munir ◽  
Yudha Pratesa ◽  
Johny W. Soedarsono

The scarcity of oil and gas resources made High Pressure and High Temperature (HPHT) reservoir attractive to be developed. The sour service environment gives an additional factor in material selection for HPHT reservoir. Austenitic 28 Cr and super duplex stainless steel 2507 (SS 2507) are proposed to be a potential materials candidate for such conditions. C-ring tests were performed to investigate their corrosion behavior, specifically sulfide stress cracking (SSC) and sulfide stress cracking susceptibility. The C-ring tests were done under 2.55 % H2S (31.48 psia) and 50 % CO2 (617.25 psia). The testing was done in static environment conditions. Regardless of good SSC resistance for both materials, different pitting resistance is seen in both materials. The pitting resistance did not follow the general Pitting Resistance Equivalent Number (PREN), since SS 2507 super duplex (PREN > 40) has more pitting density than 28 Cr austenitic stainless steel (PREN < 40). SS 2507 super duplex pit shape tends to be larger but shallower than 28 Cr austenitic stainless steel. 28 Cr austenitic stainless steel has a smaller pit density, yet deeper and isolated.


2013 ◽  
Vol 446-447 ◽  
pp. 288-290
Author(s):  
Pornpibunsompop Tosapolporn

The precipitation characterization of SUS 310S weld metal was investigated by TG/DSC and metallography technique. SMAW was selected for this study and then cut with water jet avoiding thermal effect. Austenitic is the main microstructure of weld metal because of high Creqv./Nieqv. Precipitation launched higher both %mass change and heat consumed as well as the precipitation temperature was around 800 degree Celsius.


Author(s):  
Takashi Iijima ◽  
Hirotoshi Enoki ◽  
Junichiro Yamabe ◽  
Bai An

A high pressure material testing system (max. pressure: 140 MPa, temperature range: −80 ∼ 90 °C) was developed to investigate the testing method of material compatibility for high pressure gaseous hydrogen. In this study, SSRT and fatigue life test of JIS SUS304 and SUS316 austenitic stainless steel were performed in high pressure gaseous hydrogen at room temperature, −45, and −80 °C. These testing results were compared with those in laboratory air atmosphere at the same test temperature range. The SSRT tests were performed at a strain rate of 5 × 10−5 s−1 in 105 MPa hydrogen gas, and nominal stress-strain curves were obtained. The 0.2% offset yield strength (Ys) did not show remarkable difference between in hydrogen gas and in laboratory air atmosphere for SUS304 and SUS316. Total elongation after fracture (El) in hydrogen gas at −45 and −80 °C were approximately 15 % for SUS304 and 20% for SUS316. In the case of fatigue life tests, a smooth surface round bar test specimen with a diameter of 7 mm was used at a frequency of 1, 0.1, and 0.01 Hz under stress rate of R = −1 (tension-compression) in 100 MPa hydrogen gas. It can be seen that the fatigue life test results of SUS304 and SUS316 showed same tendency. The fatigue limit at room temperature in 100 MPa hydrogen gas was comparable with that in laboratory air. The room temperature fatigue life in high pressure hydrogen gas appeared to be the more severe condition compared to the fatigue life at low temperature. The normalized stress amplitude (σa / Ts) at the fatigue limit was 0.37 to 0.39 for SUS304 and SUS316 austenitic stainless steels, respectively.


Sign in / Sign up

Export Citation Format

Share Document