scholarly journals Free Market Availability of Rapid Diagnostics Will Empower Communities To Control Malaria in India

Author(s):  
Manju Rahi ◽  
Amit Sharma

Globally malaria incidence has declined, but further reductions in malaria are not evident in many countries. In addition to the public health approaches for tackling malaria, involvement of the private sector is vital because the private sector plays a central role in healthcare delivery to the masses. In India, malaria management is primarily provided through government programs. Nonetheless, significant numbers of fever patients continue to seek healthcare in the private sector. The private sector in India is comprised of formal healthcare (qualified and approved), informal healthcare (unqualified, untrained), and traditional healers. Commercial channels for the procurement of quality-assured malaria diagnostics like rapid diagnostic tests via pharmacies or other approved outlets would empower Indian populations to self-detect malaria without delay. Easier access would minimize the diagnostic time gap, reduce costs to the patient, prevent inappropriate malaria treatment, and foster timely treatment of both malaria and non-malaria infections. Commercially available rapid diagnostic tests in the hands of the people could be an important tool in our fight against malaria.

2021 ◽  
Vol 6 (2) ◽  
pp. e004292
Author(s):  
Jung Ho Kim ◽  
Jiyeon Suh ◽  
Woon Ji Lee ◽  
Heun Choi ◽  
Jong-Dae Kim ◽  
...  

BackgroundRapid diagnostic tests (RDTs) are widely used for diagnosing Plasmodium vivax malaria, especially in resource-limited countries. However, the impact of RDTs on P. vivax malaria incidence and national medical costs has not been evaluated. We assessed the impact of RDT implementation on P. vivax malaria incidence and overall medical expenditures in South Korea and performed a cost–benefit analysis from the payer’s perspective.MethodsWe developed a dynamic compartmental model for P. vivax malaria transmission in South Korea using delay differential equations. Long latency and seasonality were incorporated into the model, which was calibrated to civilian malaria incidences during 2014–2018. We then estimated averted malaria cases and total medical costs from two diagnostic scenarios: microscopy only and both microscopy and RDTs. Medical costs were extracted based on data from a hospital in an at-risk area for P. vivax malaria and were validated using Health Insurance Review and Assessment Service data. We conducted a cost–benefit analysis of RDTs using the incremental benefit:cost ratio (IBCR) considering only medical costs and performed a probabilistic sensitivity analysis to reflect the uncertainties of model parameters, costs and benefits.ResultsThe results showed that 55.3% of new P. vivax malaria cases were averted, and $696 214 in medical costs was saved over 10 years after RDT introduction. The estimated IBCR was 2.5, indicating that RDT implementation was beneficial, compared with microscopy alone. The IBCR was sensitive to the diagnosis time reduction, infectious period and short latency period, and provided beneficial results in a benefit over $10.6 or RDT cost under $39.7.ConclusionsThe model simulation suggested that RDTs could significantly reduce P. vivax malaria incidence and medical costs. Moreover, cost–benefit analysis demonstrated that the introduction of RDTs was beneficial over microscopy alone. These results support the need for widespread adoption of RDTs.


2021 ◽  
Author(s):  
Andreas Puyskens ◽  
Eva Krause ◽  
Janine Michel ◽  
Micha Nuebling ◽  
Heinrich Scheiblauer ◽  
...  

Background The detection of SARS-CoV-2 with rapid diagnostic tests has become an important tool to identify infected people and break infection chains. These rapid diagnostic tests are usually based on antigen detection in a lateral flow approach. Aims & Methods While for PCR diagnostics the validation of a PCR assay is well established, for antigen tests e.g. rapid diagnostic tests there is no common validation strategy. Here we present the establishment of a panel of 50 pooled clinical specimens that cover a SARS-CoV-2 concentration range from approximately 1.1 x 109 to 420 genome copies per mL of specimen. The panel was used to evaluate 31 rapid diagnostic tests in up to 6 laboratories. Results Our results show that there is significant variation in the detection limits and the clinical sensitivity of different rapid diagnostic tests. We conclude that the best rapid diagnostic tests can be applied to reliably identify infectious individuals who are presenting with SARS-CoV-2 loads correlated to 106 genome copies per mL of specimen. Infected individuals displaying SARS-CoV-2 genome loads corresponding to less than 106 genome copies per mL will be identified by only some rapid diagnostics tests, while many tests miss these viral loads to a large extent. Conclusions Sensitive RDTs can be applied to identify infectious individuals with high viral loads, but not to identify infected individuals.


2020 ◽  
Author(s):  
Jaishree Raman ◽  
Laura Gast ◽  
Ryleen Balawanth ◽  
Sofonias Tessema ◽  
Basil Brooke ◽  
...  

Abstract Background: KwaZulu-Natal, one of South Africa’s three malaria endemic provinces, is nearing malaria elimination, reporting fewer than 100 locally-acquired cases annually since 2010. Despite sustained implementation of essential interventions, including annual indoor residual spraying, prompt case detection using malaria rapid diagnostics tests and treatment with effective artemisinin-based combination therapy, low-level focal transmission persists in the province. This malaria prevalence and entomological survey was therefore undertaken to identify the drivers of this residual transmission. Methods: Malaria prevalence as well as malaria knowledge, attitudes and practices among community members and mobile migrant populations within uMkhanyakude district, KwaZulu-Natal were assessed during a community-based malaria prevalence survey. All consenting participants were tested for malaria by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Finger-prick filter-paper blood spots were also collected from all participants for downstream parasite genotyping analysis. Entomological investigations were conducted around the surveyed households, with potential breeding sites geolocated and larvae collected for species identification and insecticide susceptibility testing. A random selection of households were assessed for indoor residual spray quality by cone bioassay. Results: A low malaria incidence was confirmed in the study area, with only 2% (67/2979) of the participants found to be malaria positive by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Malaria incidence however differed markedly between the border market and community (p < 0001), with the majority of the detected malaria carriers (65/67) identified as asymptomatic Mozambican nationals transiting through the informal border market from Mozambique to economic hubs within South Africa. Genomic analysis of the malaria isolates revealed a high degree of heterozygosity and limited genetic relatedness between the isolates supporting the hypothesis of limited local malaria transmission within the province. New potential vector breeding sites, potential vector populations with reduced insecticide susceptibility and areas with sub-optimal vector intervention coverage were identified during the entomological investigation. Conclusion: If KwaZulu-Natal is to successfully halt local malaria transmission and prevent the re-introduction of malaria, greater efforts needs to be placed on detecting and treating malaria carriers at both formal and informal border crossings with transmission blocking antimalarials, while ensuring optimal coverage of vector control interventions is achieved.


Author(s):  
Stephen Poole ◽  
Jennifer Townsend ◽  
Heiman Wertheim ◽  
Stephen P. Kidd ◽  
Tobias Welte ◽  
...  

Abstract Novel rapid diagnostic tests (RDTs) offer huge potential to optimise clinical care and improve patient outcomes. In this study, we aim to assess the current patterns of use around the world, identify issues for successful implementation and suggest best practice advice on how to introduce new tests. An electronic survey was devised by the International Society of Antimicrobial Chemotherapy (ISAC) Rapid Diagnostics and Biomarkers working group focussing on the availability, structure and impact of RDTs around the world. It was circulated to ISAC members in December 2019. Results were collated according to the UN human development index (HDI). 81 responses were gathered from 31 different countries. 84% of institutions reported the availability of any test 24/7. In more developed countries, this was more for respiratory viruses, whereas in high and medium/low developed countries, it was for HIV and viral hepatitis. Only 37% of those carrying out rapid tests measured the impact. There is no ‘one-size fits all’ solution to RDTs: the requirements must be tailored to the healthcare setting in which they are deployed and there are many factors that should be considered prior to this.


2001 ◽  
Vol 71 (3) ◽  
pp. 480-486
Author(s):  
Florica Barbuceanu ◽  
Stelian Baraitareanu ◽  
Stefania-Felicia Barbuceanu ◽  
Gabriel Predoi

This paper describes the current diagnostic methods of Chronic Wasting Disease (CWD) in cervides used between 2013 and 2017 in Romania. The active surveillance of CWD involves the targeted groups screening by using rapid diagnostic tests (e.g., antigen capture enzyme immunoassay). If the first test does not provide certain negative results, then the confirmatory methods have been used, i.e. histopathology, immunohistochemistry and Western immunoblotting. These tests did not lead to the detection of CWD prions (PrPCWD) in Romania. This may be due to the absence or insufficient quantity of PrPCWD in samples, below the threshold of confirmatory tests.


Sign in / Sign up

Export Citation Format

Share Document