Development of Dust Separator/Filter for Automotive Fuel Vapor Storage Systems (FVSS)

1999 ◽  
Author(s):  
Neville Bugli ◽  
Jim Dumas ◽  
Roger Khami ◽  
Johanne Wilson
2014 ◽  
Vol 268 ◽  
pp. 950-959 ◽  
Author(s):  
Kriston P. Brooks ◽  
Troy A. Semelsberger ◽  
Kevin L. Simmons ◽  
Bart van Hassel

Author(s):  
Emma Frosina ◽  
Adolfo Senatore ◽  
Assunta Andreozzi ◽  
Gianluca Marinaro ◽  
Dario Buono ◽  
...  

This paper is focused on the study of the sloshing in the fuel tank of vehicles. As well known, fluid dynamic in an automotive fuel tank have to be studied and optimized to allow the correct fuel suction in all driving conditions, prevent undesired slosh noise and limit its influence on fuel vapor formation and management. Experimentation to predict the sloshing with a good accuracy depends on the ability to replace real working parameters and conditions like accelerations, decelerations, slope variations and rotations. This paper shows results obtained studying the sloshing inside a reference tank with computational fluid-dynamic and experimental approaches. The test bench for automotive fuel tank, employed in this analysis, has been designed by Moog Inc. on specification from Fiat Chrysler Automobiles and it is aimed at covering the wider possible range of dynamic conditions. It basically consists of a hexapod, which uses six independent actuators arranged in three triangles and connecting a base and a top platform, thus allowing all six DOFs. Above the top platform is mounted a tilt table with two additional actuators, to extend pitch and roll envelope, thus the name of “8-DOF bench”. A dedicated CFD model has been built up using a CFD commercial code. The model has been integrated with the multiphase tool in order to correctly reply the real free surface. Results, numerical and experimental, have been post-processed with Matlab® comparing percentage gaps of the free surfaces each other. The comparison has shown a good agreement. This research is the result of a scientific collaboration between the Industrial Engineering Department of University of Naples Federico II and FCA Fiat Chrysler Automobiles.


Author(s):  
T. A. Dodson ◽  
E. Völkl ◽  
L. F. Allard ◽  
T. A. Nolan

The process of moving to a fully digital microscopy laboratory requires changes in instrumentation, computing hardware, computing software, data storage systems, and data networks, as well as in the operating procedures of each facility. Moving from analog to digital systems in the microscopy laboratory is similar to the instrumentation projects being undertaken in many scientific labs. A central problem of any of these projects is to create the best combination of hardware and software to effectively control the parameters of data collection and then to actually acquire data from the instrument. This problem is particularly acute for the microscopist who wishes to "digitize" the operation of a transmission or scanning electron microscope. Although the basic physics of each type of instrument and the type of data (images & spectra) generated by each are very similar, each manufacturer approaches automation differently. The communications interfaces vary as well as the command language used to control the instrument.


2017 ◽  
Vol 137 (8) ◽  
pp. 596-597
Author(s):  
Kenta Koiwa ◽  
Kenta Suzuki ◽  
Kang-Zhi Liu ◽  
Tadanao Zanma ◽  
Masashi Wakaiki ◽  
...  

2016 ◽  
Vol E99.C (2) ◽  
pp. 293-301 ◽  
Author(s):  
Youngjoo LEE ◽  
Jaehwan JUNG ◽  
In-Cheol PARK

Sign in / Sign up

Export Citation Format

Share Document