Development of a Gas-Phase LPG Injection System for a Small SI Engine

Author(s):  
Liguang Li ◽  
Zhimin Liu ◽  
Huiping Wang ◽  
Baoqing Deng ◽  
Zhensuo Wang ◽  
...  
Keyword(s):  
Author(s):  
Mohamad Rifal ◽  
Nazarudin Sinaga

Methanol (CH3OH) is the one of an alternative fuel for SI engine. Methanol has a similiar charakteristic and fisik properties to gasoline. This study using methanol-gasoline fuel blend (M10, M20 and M40). The aim of this study was to determine the effect of using methanol-gasoline fuel blend of  fuel consumption, exhaust emission, power and torque. In the experiment,  an engine three-cylidre 12 valve with tecnology DOHC Mivec and ECI MPI injection System 1193 cc was used. With a little modification that is using methanol controler to maximize the result of research. The experimental result showed that the fuel consumption decrease with the use of methanol-gasoline ful blend. Each of these reductions in fuel consumption for the M10, M20 and M40 are 1 %, 3% dan 3%. The Power and Torque is increas while using fuel blend than gasoline and it also decrease exhaust emission


2009 ◽  
Author(s):  
Norifumi Mizushima ◽  
Susumu Sato ◽  
Yasuhiro Ogawa ◽  
Toshiro Yamamoto ◽  
Umerujan Sawut ◽  
...  

2007 ◽  
Vol 131 (4) ◽  
pp. 33-41
Author(s):  
Piotr JAKLIŃSKI ◽  
Łukasz GRABOWSKI ◽  
Mirosław WENDEKER ◽  
Jacek CZARNIGOWSKI ◽  
Piotr SZCZĘSNY ◽  
...  

The paper presents results of experiments on operation parameters of a 4-cylinder Holden 2.0 MPFI engine, supplied with LPG by means of sequential intake-manifold injection system, in the function of the distance between the injection ferrule and the cylinder’s inlet valve. Four positions of the injection ferrule along the manifold were tested, i.e. 115, 170, 230 and 310 mm from the valve. Indicated pressure, peak pressure and toxic emissions, in the function of injection start angle, were analyzed and compared for each position. The importance of the distance between injection ferrule and inlet valve was proved.


2019 ◽  
Vol 8 (3) ◽  
pp. 2383-2387

This Paper shows the effect of port fuel injection pressure of CNG in 3-cylinder SI Engine at Wide Open Throttle position using sequential port fuel injection system. All trials are performed on 4-stroke, 796 cc MPFI S.I engine at injection pressure of 2.0, 2.2, 2.4, 2.6, 2.8 bar for constant speed of 2500, 3000, 3500, 4000 & 4500 rpm. During the trial compression ratio is kept constant at 9.2 with Maximum Brake Torque (MBT) spark timing of 15oBTDC. Optimum torque is obtained for CNG at injection pressure of 2.6 bar and 3000 rpm. Gasoline trials are performed at same compression ratio for comparison with CNG at same injection pressure. Performance and emission characteristics with combustion analysis are performed at optimum injection pressure of 2.6 bar.


Author(s):  
Simeon Iliev

The aim of this study is to develop the one-dimensional model of a four-cylinder, four-stroke, multi-point injection system SI engine and a direct injection system SI engine for predicting the effect of various fuel types on engine performances, specific fuel consumption, and emissions. Commercial software AVL BOOST was used to examine the engine characteristics for different blends of methanol and gasoline (by volume: 5% methanol [M5], 10% methanol [M10], 20% methanol [M20], 30% methanol [M30], and 50% methanol [M50]). The methanol-gasoline fuel blend results were compared to those of net gasoline fuel. The obtained results show that when methanol-gasoline fuel blends were used, engine performance such as power and torque increases and the brake-specific fuel consumption increases with increasing methanol percentage in the blended fuel.


Author(s):  
Shu-Liang Liu ◽  
Tian-You Wang ◽  
Hong-Jun Su ◽  
Xing Li ◽  
Jian-Wen Li ◽  
...  

The intake system of a 2-Valve TJ376QE gasoline engine was modified so that its intake swirl and tumble motions were considerably intensified. The stronger air motions are helpful to organize air and fuel mixture strength distribution. The previous port electronic fuel injection system was modified and the technique of TEFI (Twice Electronic Fuel Injection per cycle) is employed. Through regulations of the two injection timings and proportions, an adequate air and fuel mixture stratification–quasi-homogenous mixture was produced and the lean burn can be realized in a product 2-valve S.I. engine. The experimental results show that the scope of bsfc reduction can be >10 % at quite wide load range by ether 1 injection or by 2 injections. Comparing to the conventional single injection, a leaner mixture can be used by TEFI and an even more reduced fuel consumption of 5% was reached by 2 injections. The optimized values of A/F ratio can be higher by 2–3 units of A/F than that of the single injection method. The TEFI can reduce NOx emission by 35–50% than that of single injection at engine load (bmep) range of 0.20–0.75 (MPa).


Sign in / Sign up

Export Citation Format

Share Document