scholarly journals Investigation of the Gasoline Engine Performance and Emissions Working on Methanol-Gasoline Blends Using Engine Simulation

Author(s):  
Simeon Iliev

The aim of this study is to develop the one-dimensional model of a four-cylinder, four-stroke, multi-point injection system SI engine and a direct injection system SI engine for predicting the effect of various fuel types on engine performances, specific fuel consumption, and emissions. Commercial software AVL BOOST was used to examine the engine characteristics for different blends of methanol and gasoline (by volume: 5% methanol [M5], 10% methanol [M10], 20% methanol [M20], 30% methanol [M30], and 50% methanol [M50]). The methanol-gasoline fuel blend results were compared to those of net gasoline fuel. The obtained results show that when methanol-gasoline fuel blends were used, engine performance such as power and torque increases and the brake-specific fuel consumption increases with increasing methanol percentage in the blended fuel.

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1322
Author(s):  
Simeon Iliev

Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different types of alcohol-blended fuels on performance and emissions. For the purpose of this study, the AVL Boost software was used to analyse characteristics of the gasoline engine when operating with different mixtures of ethanol, methanol, butanol, and gasoline (by volume). Results obtained from different fuel blends showed that when alcohol blends were used, brake power decreased and the brake specific fuel consumption increased compared to when using gasoline, and CO and HC concentrations decreased as the fuel blends percentage increased.


Author(s):  
Mohamad Rifal ◽  
Nazarudin Sinaga

Methanol (CH3OH) is the one of an alternative fuel for SI engine. Methanol has a similiar charakteristic and fisik properties to gasoline. This study using methanol-gasoline fuel blend (M10, M20 and M40). The aim of this study was to determine the effect of using methanol-gasoline fuel blend of  fuel consumption, exhaust emission, power and torque. In the experiment,  an engine three-cylidre 12 valve with tecnology DOHC Mivec and ECI MPI injection System 1193 cc was used. With a little modification that is using methanol controler to maximize the result of research. The experimental result showed that the fuel consumption decrease with the use of methanol-gasoline ful blend. Each of these reductions in fuel consumption for the M10, M20 and M40 are 1 %, 3% dan 3%. The Power and Torque is increas while using fuel blend than gasoline and it also decrease exhaust emission


2011 ◽  
Vol 236-238 ◽  
pp. 151-154 ◽  
Author(s):  
Jia Quan Wang ◽  
Ping Sun ◽  
Zhen Chen ◽  
De Qing Mei

The micro-emulsion fuels were prepared with complex surfactant, and the effects of temperature on the stability of these fuels were investigated. The engine performance and the emissions were studied when the engine was fueled with diesel and micro-emulsion diesel respectively. Results showed that when the engine was fueled with micro-emulsion diesel, the NOXand smoke emissions were decreased obviously and HC and CO emissions were increased slightly. Discounting of surfactant and water, the specific fuel consumption of micro-emulsion diesel was lower than those of diesel under any load at the speed of 2900r/min.


2021 ◽  
Vol 21 (4) ◽  
pp. 289-301
Author(s):  
Mohanad Aldhaidhawi ◽  
Oras Khudhayer Obayes ◽  
Muneer Najee

In the present work, the direct-injection petrol engine (GDI) combustion, emissions and performance at different engine speeds (1500, 2000, 2500 and 3000 rpm) with a constant throttle position have been studied. The fuel considered in this work is liquid petroleum gas (LPG) and gasoline. The software adopted in all simulations by the AVL BOOST 2016. A Hyundai 2.0 liter, 16 valves and 4 cylinders engine with a compression ratio 17.5:1 is used. The effect of several inlet air temperatures (0, 10, 20, 30, 40 and 50 oC) on the engine performance, combustion and emissions are also studied. The results show that the increase in the inlet air temperature leading to increase the peak fire temperature, brake specific fuel consumption (BSFC) and nitrogen oxide (NOx). However, this process results in a reduction in the peak fire pressure, combustion period (duration), brake power and brake torque. The maximum fire temperature and maximum specific fuel consumption can be achieved when the engine speed is 3000 rpm and the inlet air temperature is 50 ºC.


2021 ◽  
Vol 927 (1) ◽  
pp. 012027
Author(s):  
Tri Susilo Wirawan ◽  
Andi Erwin Eka Putra ◽  
Nasruddin Aziz

Abstract The consumption of fossil fuels raises major issues, such as energy availability and environmental preservation. In order to minimize these issues, it is important to propose alternative fuel. Alternative fuel to be proposed should be easy to apply current type of enginethat do not require engine modification and environmentally friendly. This study aims to determine the effect of addition of methanol as a non-fossil fuel mixture into RON 88 gasoline. The ratio of mixture is 80% of RON 88 gasoline and 20% of methanol. We conducted the experiment to determine the mixture effect on fuel properties, engine performance, engine vibration, engine noise, and exhaust emissions. The engine simulation utilized the TV-1 engine (Kirloskar Oil Engines Ltd.). The results show that the engine performance of fuel mixed with methanol tends to be better even though the fuel consumption is higher, the highest specific fuel consumption in the methanol mixture is 2.9 kg/kwh while the specific fuel consumption for gasoline without a methanol mixture is 2.64 kg/kwh. The largest engine vibration occurred in the measurement of the vertical radial direction of 36 m/s2 and 34 m/s2 for with methanol and without the addition of methanol, at 1200 rpm to 1600 rpm respectively. Engine noise is higher for fuel mixed with methanol with the largest value of 86.4 dB compared to 85.7 dB for pure gasoline. Lower emission levels for fuel blended with methanol, where the highest HC emission for pure gasoline is 32 ppm while fuel mixed with methanol is 17 ppm.


2018 ◽  
Vol 22 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Abdulvahap Cakmak ◽  
Murat Kapusuz ◽  
Orkhan Ganiyev ◽  
Hakan Ozcan

Abstract - The objective of this paper is to investigate the use of methyl acetate as oxygenated fuel blending for base gasoline in SI engine. The effects of methyl acetate on engine performance parameters (brake specific fuel consumption, brake thermal efficiency and energy consumption rate) and exhaust emissions (CO, HC, CO2 and NOx) of SI engine have been experimentally investigated. Engine experiments were conducted on a single cylinder, water cooled, spark-ignition test engine at constant moderate speed; 1500 rpm for different loads; 104, 207, 311 and 414 kPa fuelling the engine with base gasoline, M5 (95 % base gasoline +5 % methyl acetate) and M10 (90 % base gasoline +10 % methyl acetate). The results showed that adding methyl acetate to base gasoline increases the brake specific fuel consumption while reducing the brake thermal efficiency of the engine. Furthermore, it was also observed that methyl acetate addition does not have a great effect on HC emissions, however, reduces CO and increases CO2 emissions. NOx results showed a striking increase in the level of NOx emissions with the addition of methyl acetate.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


Author(s):  
Adel Ghenaiet

This paper presents an evolutionary approach as the optimization framework to design for the optimal performance of a high-bypass unmixed turbofan to match with the power requirements of a commercial aircraft. The parametric analysis had the objective to highlight the effects of the principal design parameters on the propulsive performance in terms of specific fuel consumption and specific thrust. The design optimization procedure based on the genetic algorithm PIKAIA coupled to the developed engine performance analyzer (on-design and off-design) aimed at finding the propulsion cycle parameters minimizing the specific fuel consumption, while meeting the required thrusts in cruise and takeoff and the restrictions of temperatures limits, engine size and weight as well as pollutants emissions. This methodology does not use engine components’ maps and operates on simplifying assumptions which are satisfying the conceptual or early design stages. The predefined requirements and design constraints have resulted in an engine with high mass flow rate, bypass ratio and overall pressure ratio and a moderate turbine inlet temperature. In general, the optimized engine is fairly comparable with available engines of equivalent power range.


Sign in / Sign up

Export Citation Format

Share Document