Urine Processing for Water Recovery via Freeze Concentration

2005 ◽  
Author(s):  
Jeff M. Schmidt ◽  
James E. Alleman
2014 ◽  
Vol 695 ◽  
pp. 451-454 ◽  
Author(s):  
Amran Nurul Aini ◽  
Samsuri Shafirah ◽  
Norzita Ngadi ◽  
Zaki Yamani Zakaria ◽  
Jusoh Mazura

Behaviours of ice crystal growth at two different operating parameters namely coolant temperature and circulation time were investigated for progressive freeze concentration (PFC) of glucose solution through a vertical finned crystallizer (VFC). Two determinant parameters which are ice production rate (mu), and water recovery (WR) were used to illustrate the behaviours of ice crystal growth in this study. From the result, higher ice production rate (mu) and water recovery (WR) were achieved at lower coolant temperature. On the other hand, longer circulation time resulted in lower ice production rate (mu), but at the same time increased the water recovery (WR). The maximum ice production rate (mu) and water recovery (WR) attained through this study were 1.522 gm-2s-1 and 51.131 %, respectively.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 327 ◽  
Author(s):  
Federico Volpin ◽  
Umakant Badeti ◽  
Chen Wang ◽  
Jiaxi Jiang ◽  
Jörg Vogel ◽  
...  

A reliable, robust, and resilient water recovery system is of paramount importance on board the International Space Station (ISS). Such a system must be able to treat all sources of water, thereby reducing resupply costs and allowing for longer-term space missions. As such, technologies able to dewater urine in microgravity have been investigated by different space agencies. However, despite over 50 years of research and advancements on water extraction from human urine, the Urine Processing Assembly (UPA) and the Water Processor Assembly (WPA) now operating on the ISS still achieve suboptimal water recovery rates and require periodic consumables resupply. Additionally, urine brine from the treatment is collected for disposal and not yet reused. These factors, combined with the need for a life support system capable of tolerating even dormant periods of up to one year, make the research in this field ever more critical. As such, in the last decade, extensive research was conducted on the adaptation of existing or emerging technologies for the ISS context. In virtue of having a strong chemical resistance, small footprint, tuneable selectivity and versatility, novel membrane-based processes have been in focus for treating human urine. Their hybridisation with thermal and biological processes as well as the combination with new nanomaterials have been particularly investigated. This article critically reviews the UPA and WPA processes currently in operation on the ISS, summarising the research directions and needs, highlighted by major space agencies, necessary for allowing life support for missions outside the Low Earth Orbit (LEO). Additionally, it reviews the technologies recently proposed to improve the performance of the system as well as new concepts to allow for the valorisation of the nutrients in urine or the brine after urine dewatering.


2011 ◽  
Vol 10 (7) ◽  
pp. 955-958 ◽  
Author(s):  
Shunitz Tanaka ◽  
Yingjie Dai ◽  
Ying Zhang ◽  
Baiyin Liu ◽  
Masahiro Teduka ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Adele Brunetti ◽  
Francesca Macedonio ◽  
Giuseppe Barbieri ◽  
Enrico Drioli

Abstract The recent roadmap of SPIRE initiative includes the development of “new separation, extraction and pre-treatment technologies” as one of the “key actions” for boosting sustainability, enhancing the availability and quality of existing resources. Membrane condenser is an innovative technology that was recently investigated for the recovery of water vapor for waste gaseous streams, such as flue gas, biogas, cooling tower plumes, etc. Recently, it has been also proposed as pre-treatment unit for the reduction and control of contaminants in waste gaseous streams (SOx and NOx, VOCs, H2S, NH3, siloxanes, halides, particulates, organic pollutants). This perspective article reports recent progresses in the applications of the membrane condenser in the treatment of various gaseous streams for water recovery and contaminant control. After an overview of the operating principle, the membranes used, and the main results achieved, the work also proposes the role of this technology as pre-treatment stage to other separation technologies. The potentialities of the technology are also discussed aspiring to pave the way towards the development of an innovative technology where membrane condenser can cover a key role in redesigning the whole upgrading process.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1085
Author(s):  
Williams Leiva ◽  
Norman Toro ◽  
Pedro Robles ◽  
Edelmira Gálvez ◽  
Ricardo Ivan Jeldres

This research aims to analyze the impact of sodium tripolyphosphate (STPP) as a rheological modifier of concentrated kaolin slurries in seawater at pH 8, which is characteristic of copper sulfide processing operations. The dispersion phenomenon was analyzed through chord length measurements using the focused beam reflectance measurement (FBRM) technique, complementing size distributions in unweighted and square-weighted modes. The reduction of the rheological properties was significant, decreasing from 231 Pa in a reagent-free environment to 80 Pa after the application of STPP. A frequency sweep in a linear viscoelastic regime indicated that by applying a characteristic dosage of 0.53 kg/t of STPP, the pulp before yielding increases its phase angle, which increases its liquid-like character. Measurements of the chord length verified the dispersion of particles, which showed an apparent increase in the proportion of fine particles and a reduction of the coarser aggregates when STPP was applied. Measurements of the zeta potential suggested that the high anionic charge of the reagent (pentavalent) increases the electrostatic repulsions between particles, overcoming the effect of cations in seawater. The results are relevant for the mining industry, especially when the deposits have high contents of complex gangues, such as clays, that increase the rheological properties. This increases the energy costs and water consumption needed for pumping the tailings from thickeners to the tailing storages facilities. The strategies that allow for the improvement of the fluidity and deformation of the tailings generate slack in order to maximize water recovery in the thickening stages.


Author(s):  
Soyoon Kum ◽  
Matthew R. Landsman ◽  
Gregory M. Su ◽  
Guillaume Freychet ◽  
Desmond F. Lawler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document