Application of dynamic mesh technology in the oil film flow simulation for hydrostatic bearing

2019 ◽  
Vol 71 (1) ◽  
pp. 146-153
Author(s):  
Yanqin Zhang ◽  
Zhiquan Zhang ◽  
Xiangbin Kong ◽  
Rui Li ◽  
Hui Jiang

Purpose The purpose of this paper was to obtain the lubrication characteristics of heavy hydrostatic bearing in heavy equipment manufacturing industry through theoretical analysis and numerical simulation. Design/methodology/approach This paper discusses the influence of oil film thickness variation on velocity field, outlet-L and outlet-R flow velocity under the hydrostatic bearing running in no-load 0 N, load 400 KN, full load 1,500 KN and rotating speeds of 10 r/min, 20 r/min, 30 r/min, 40 r/min, 50 r/min and 60 r/min, by using dynamic mesh technology and FLUENT software. Findings When the working table rotates clockwise, in the change process of oil film thickness, the fluid flow pattern of the lubricating oil at the edge of the sealing oil is the rule of laminar flow, and the oil cavity has a vortex. The outlet-R flow velocity becomes higher and higher by increasing the bearing load and working table speed, and the flow velocity increases with the decrease in oil film thickness; the outlet-L flow velocity increases with the decrease in oil film thickness under low rotating speed (less than 10 r/min) condition and decreases with the decrease of oil film thickness under high rotating speed (more than 60 r/min) condition. Originality/value The influence of the oil film thickness on the flow state distribution of the oil film was analyzed under different working conditions, and the influence rules of oil film thickness on the flow velocity of hydrostatic bearing oil pad was obtained by using dynamic mesh technology.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuqin Yang ◽  
Dexing Hu ◽  
Qianhao Xiao ◽  
Shun Zhao

Purpose This paper aims to study line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers as well as the effect of different crown widths (dw) on oil film thickness under textured conditions. Design/methodology/approach The laser processing method was used to make the micro-texture on the surface of GCr15 steel rollers; lithium grease was used as the lubricant, and line-contact elastohydrodynamic grease lubrication experiments under pure sliding conditions were performed on light interference elastohydrodynamic-lubricated experimental table. Findings The results show that the line-contact elastohydrodynamic grease lubrication is closely related to the textured crown width of steel rollers. At low speeds and light loads, texturing has an inevitable inhibitory effect on the formation of the lubricating oil film, and the smaller the width of the crown area, the more obvious the inhibitory effect, which is not conducive to the improvement of the lubrication condition. At high speeds and high loads, the textured roller with dw = 1 mm has the largest oil film thickness and shows better lubrication performance. Originality/value At present, there is little research on the surface texture of line-contact friction pairs. This work explores the effect of different textured crown width on the lubricating properties of line-contact elastohydrodynamic grease lubrication by experiment. It provides a new theoretical basis for the subsequent practical application of surface texture technology.



2018 ◽  
Vol 70 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Xiao-dong Yu ◽  
Lei Geng ◽  
Xiao-jun Zheng ◽  
Zi-xuan Wang ◽  
Xiao-gang Wu

Purpose Rotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this paper is to study reasonable matching relationship between the rotational speed and the load-carrying capacity. Design/methodology/approach A mathematical model of relationship between the rotational speed and the load-carrying capacity of the hydrostatic bearing with double-rectangle recess is set up on the basis of the tribology theory and the lubrication theory, and the load and rotational speed characteristics of an oil film temperature field and a pressure field in the hydrostatic bearing are analyzed, reasonable matching relationship between the rotational speed and the load-carrying capacity is deduced and a verification experiment is conducted. Findings By increasing the rotational speed, the oil film temperature increases, the average pressure decreases and the load-carrying capacity decreases. By increasing the load-carrying capacity, the oil film temperature and the average pressure increases and the rotational speed decreases; corresponding certain reasonable matching values are available. Originality/value The load-carrying capacity can be increased and the rotational speed improved by means of reducing the friction area of the oil recess by using low-viscosity lubricating oil and adding more oil film clearance; but, the stiffness of the hydrostatic bearing decreases.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shiqian Ni ◽  
Yanqin Zhang ◽  
Zhen Quan

Purpose When the clearance oil film of hydrostatic bearing friction pair is in critical lubrication state, the phenomenon of zero flow of local lubricating oil will aggravate the oil film temperature rise, which needs to be solved. Design/methodology/approach In this paper, the critical lubrication parameter equation and the oil film temperature rise mathematical model are derived for the new type q1-205 double rectangular cavity hydrostatic bearing. Based on a combination of theoretical analysis, simulation and experimental verification, this paper analyzes the flow characteristics and temperature rise characteristics of the lubricating oil when the hydrostatic bearing is in a critical lubrication state under different operating conditions and finally obtains the critical lubrication state of the oil film. Findings This study found that the numerical simulations and the derived formulas agree with the results. When the oil film is in critical lubrication, the cross-section side flow of the oil side is almost zero. The heat cannot be taken away in time, resulting in the local temperature rise of the oil film, which causes serious heat accumulation. Originality/value It is concluded that the operating condition parameters corresponding to the critical lubrication state provide a theoretical basis for the selection of actual hydrostatic bearing operating conditions, which is of great scientific significance.



2011 ◽  
Vol 239-242 ◽  
pp. 1418-1421 ◽  
Author(s):  
Yan Qin Zhang ◽  
Xiao Qiu Xu ◽  
Xiao Dong Yang ◽  
Hong Mei Li ◽  
Hui Jiang ◽  
...  

According to the problem of the influence of oil film thickness on temperature rise for heavy hydrostatic thrust bearing during operation, build viscosity-temperature equation of lubricating oil film and mathematics model of oil film temperature rise of heavy hydrostatic bearing with multiple oil pads, simulate the temperature field of hydrostatic bearing with sector cavity under various oil film thickness using FVM(finite volume method), and reveal the influence law of oil film thickness of temperature rise for hydrostatic bearing. The results show that temperature distribution of hydrostatic bearing is much the same under various oil film thicknesses, but the influence of oil film thickness of temperature rise for hydrostatic bearing is greater. The results of numerical calculations actually response flow state inside hydrostatic bearing ,offer theoretical foundation for the design of hydrostatic bearing in engineering practice, and have important significance in improving operation stability of NC machine.



2019 ◽  
Vol 71 (9) ◽  
pp. 1072-1079
Author(s):  
Yanqin Zhang ◽  
Jichang Sun ◽  
Pengrui Kong ◽  
Xiangbin Kong ◽  
Xiaodong Yu

Purpose The purpose of the paper is to analyze the bearing capacity of hydrostatic bearing during the change of film thickness under different working conditions and to improve the processing efficiency and precision of equipment. Design/methodology/approach In this study, Q1-205 double rectangular cavity hydrostatic thrust bearing is selected as the research object. The dynamic mesh method and ANSYS/FLUENT software are used to simulate the curves of oil film thickness and oil pressure under different operating conditions. Finally, the change of pressure in the oil cavity at different operating speeds under a certain inlet flow rate was tested through design experiments. Findings When the film thickness was thick, the maximum pressure in the oil cavity at different inlet velocities showed little difference. With a larger inlet flow, the maximum pressure in the oil cavity was higher. The pressure at the edge of the oil seal was linearly distributed. The oil pressure in the downstream side was greater than that in the counter flow side. When the working pressure was low, the pressure in the oil cavity slightly decreased with the increase of working speed. Moreover, the pressure loss at high speed was considerable. Originality/value Based on the lubrication theory, the mathematical model of the bearing oil film was set up. The bearing capacity equation of the hydrostatic cavity was derived. The double-rectangular-annular hydrostatic guides studied in this paper have not been reported in previous research literature and the method of dynamic mesh dynamic simulation of variable viscosity is seldom studied before. The bearing characteristics and the change of oil film thickness under different working conditions have been studied systematically and comprehensively. The theoretical analysis results are basically consistent with the experimental results.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuqin Yang ◽  
Xiaojie Han ◽  
Mingqing Si

Purpose This paper aims to study the influence of three-column groove shell radius, ball radius, lubricating oil viscosity and elastic modulus on the thermal elastohydrodynamic lubrication (TEHL) characteristics and optimisation of the ball-type tripod universal joint. Design/methodology/approach The point contact TEHL model of the joint was developed, and the multi-grid method was used to solve it. The influence of three-column groove shell radius, ball radius, lubricating oil viscosity and elastic modulus on the lubrication characteristics was analysed. Further, the optimisation of the joint TEHL performance was carried out by the Kriging approximation model combined with the multi-objective particle swarm optimisation (MOPSO) algorithm. Findings The research results show that increasing groove shell radius and ball radius can effectively increase the oil film thickness, and decrease the oil film pressure, as well as the temperature rise. Decreasing elastic modulus can reduce the oil film temperature rise and pressure, and increasing viscosity can effectively increase the oil film thickness. The optimised minimum oil film thickness increases by 33.23% and the optimised maximum oil film pressure and maximum temperature rise decrease by 11.92% and 28.87%, respectively. Furthermore, the relative error of each response output is less than 10%. Originality/value This study applies TEHL theory to the tribological research of the ball-type tripod universal joint, and the joint’s lubrication performance is improved greatly by the Kriging model and MOPSO algorithm, which provides an effective measure to raise the joint’s working efficiency.



2012 ◽  
Vol 622-623 ◽  
pp. 489-493
Author(s):  
Iskander Beisembetov ◽  
Sabyi Ussupov ◽  
Bakhyt Absadykov ◽  
Beken Arymbekov ◽  
Birzhan Bektibay

Development relevance to improve the operational parameters of the support units of machine tools in their design elements is introduced that increase the rigidity of the components, their carrying capacity, damp occurring vibrations in the process, the coefficient of performance (COP), smoothness of motion, positioning accuracy, reducing the wear of their working surfaces and maintain the original accuracy. A number of engineering development [1], [2], aimed at improving the above characteristics of the machine by changing and improving design of reference nodes used in these rails rolling bearings, aerostatic and hydrostatic guides, as well as the use of automatic control systems of its basic parameters, determine its quality. However, in some operating conditions in which errors occur, mainly due to the instability of oil-film thickness (gap) between the mobile and immobile elements of the hydrostatic bearing. For high accuracy requirements it will negatively affect the quality of machined parts and equipment performance. On this basis, it becomes apparent urgency of the problem of automatic stabilization of oil-film thickness (gap) in the IR. To ensure high precision equipment to improve power system hydrostatic bearing units of machine tools. This, in turn, creates the prerequisite for the development of stabilization systems of the gap in the hydrostatic bearing, with the help of which the thickness of oil layer in them would be kept constant even with significant dynamic load on the support.



2018 ◽  
Vol 70 (3) ◽  
pp. 463-473 ◽  
Author(s):  
Fangwei Xie ◽  
Jie Zhu ◽  
Jianzhong Cui ◽  
Xudong Zheng ◽  
Xinjian Guo ◽  
...  

Purpose The purpose of this paper is to study the dynamic transmission of the oil film in soft start process of hydro-viscous drive (HVD) between the friction pairs with consideration of surface roughness, and obtain the distribution law of temperature, velocity, pressure, shear stress and viscous torque of the oil film. Design/methodology/approach The revised soft-start models of HVD were derived and calculated, including average Reynolds equation, asperity contact model, load force model and total torque model. Meanwhile, a 2D model of the oil film between friction pair was built and solved numerically using computational fluid dynamics (CFD) technique in FLUENT. Findings The results show that the maximum temperature gradually reduces from the intermediate range (z = 0.5 h) to the inner side of the friction pair along the direction of oil film thickness. As the soft-start process continues, pressure gradient along the direction of the oil film thickness gradually changes to zero. In addition, tangential velocity increases and yet radial velocity decreases with the increase of the radius. Originality/value In this paper, it was found that the viscous torque calculated by the numerical method is smaller than that by the CFD model, but their overall trend is almost the same. This also demonstrates the effectiveness of the numerical simulation.



2018 ◽  
Vol 70 (8) ◽  
pp. 1500-1508 ◽  
Author(s):  
Baogang Wen ◽  
Hongjun Ren ◽  
Pengfei Dang ◽  
Xu Hao ◽  
Qingkai Han

PurposeThe oil film thickness provides a key performance indicator of a ball bearing lubrication condition. This paper aims to propose an approach to calculate and measure the oil film thickness of the bearing.Design/methodology/approachOn a specially designed test rig, measurement of the capacitance is used to monitor the oil film thickness of ball bearing. A corrected film thickness formula taking account of the influences of non-Newtonian shear thinning and thermal is introduced to predict the oil film thickness of ball bearing. And then the film thickness distribution and the corresponding capacitances are calculated.FindingsMeasurement and calculation of oil film thickness in a ball bearing are carried out under various rotating speeds and external loads. By comparing the calculated capacitances with measured results, it can be concluded that the calculated results obtained by the amended film thickness formula are much closer to the test findings than the classical computed values according to Hamrock–Dowson.Originality/valueA new corrected film thickness formula is introduced in predicting oil film thickness of ball bearing and verified by the series of experiments according to capacitance method.



2019 ◽  
Vol 71 (9) ◽  
pp. 1080-1085 ◽  
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Yi Liu ◽  
Longjie Dai ◽  
Zhaohua Shang

Purpose The purpose of this paper is to use elastohydrodynamic lubrication (EHL) theory to study the variation of the equivalent curvature radius “R” on the change of oil film thickness, pressure, temperature rise and friction coefficient in the contact zone between bush-pin in industrial chain drive. Design/methodology/approach In this paper, the contact between bush and pin is simplified as infinitely long line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. The two constitutive equations, namely, Newton fluid and Ree–Eyring fluid are used in the calculations. Findings It is found that with the increase of equivalent curvature radius, the thickness of oil film decreases and the temperature rise increases. Under the same condition, the friction coefficient of Newton fluid is higher than that of Ree–Eyring fluid. When the load increases, the oil film thickness decreases, the temperature rise increases and the friction coefficient decreases; and the film thickness increases with the increase of the entraining speed under the condition “R < 1,000 mm”. Research limitations/implications The infinite line contact assumption is only an approximation. For example, the distances between the two inner plates are 5.72 mm, by considering the two parts assembled into the inner plates, the total length of the bush is less than 6 mm. The diameter of the pin and the bore diameter of the bush are 3.28 and 3.33 mm. However, the infinite line contact is also helpful in understanding the general variation of oil film characteristics and provides a reference for the future study of finite line contact of chain problems. Originality/value The change of the equivalent radius R on the variation of the oil film in the contact of the bush and the pin in industrial chain drive was investigated. The size effect influences the lubrication characteristic greatly in the bush-pin pair.



Sign in / Sign up

Export Citation Format

Share Document