Life Cycle Energy Use and GHG Emissions Assessment for DME from Coal

Author(s):  
Xiaomin Xie ◽  
Zhen Huang
Keyword(s):  
Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 105 ◽  
Author(s):  
Nadia MIRABELLA ◽  
Martin RÖCK ◽  
Marcella Ruschi Mendes SAADE ◽  
Carolin SPIRINCKX ◽  
Marc BOSMANS ◽  
...  

Globally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.


2021 ◽  
Author(s):  
Deva Siva Veylan

Detached accessory dwelling units are a building typology that, when built to passive design standards, can help reduce GHG emissions while addressing the socioeconomic pressures facing many housing markets. Energy performance metrics like those used in passive design standards are based on per unit of floor area and lead to a size-bias against smaller housing typologies. A life cycle assessment of cost-optimal passive house sizes ranging from 230 m² (2,500 ft²) to 30 m² (300 ft²) is performed to understand their total life cycle energy use and GHG emissions implications. Additionally, an analysis using BEopt examines operational energy use for 10 cost-optimal passive house sizes ranging from 230 m² (2,500 ft²) to 30 m² (300 ft²) across all 17 climate zones and examines how cost-optimal passive design changes with house size. The results show that per-occupant energy use and GHG emissions are similar or better for small house sizes and that cost-optimal passive design does not change significantly with house size.


2005 ◽  
Vol 895 ◽  
Author(s):  
Vasilis Fthenakis ◽  
Hyung Chul Kim

AbstractThe life cycle of the thin film CdTe PV modules in the U.S. have been investigated based on materials and energy inventories for a commercial 25 MW/yr production plant. The energy payback times (EPBT) of these modules are 0.75 years and the GHG emissions are 18 gCO2-eq/kWh for average U.S. solar irradiation conditions. Adding the impact of an optimized ground-level balance of system (BOS), result in a total EPBT of 1.2 years and total life-cycle GHG emissions of 24 gCO2-eq/kWh.


2018 ◽  
Vol 128 ◽  
pp. 470-478 ◽  
Author(s):  
Xiaolong Song ◽  
Chenglong Zhang ◽  
Wenyi Yuan ◽  
Dong Yang

2016 ◽  
Vol 38 ◽  
pp. 63-70 ◽  
Author(s):  
Kelsey Gerbrandt ◽  
Pei Lin Chu ◽  
Allison Simmonds ◽  
Kimberley A Mullins ◽  
Heather L MacLean ◽  
...  

2021 ◽  
pp. 100-112
Author(s):  
Lemma Beressa ◽  
Battula Vijaya Saradhi

The use of imported fuel in the Ethiopian cement industry increased the cost of production and the environmental burden, necessitating intervention. The greenhouse gas (GHG) emission, energy usage intensity, and resource exploitation of Ethiopian cement production were evaluated using the life cycle impact assessment (LCA) tool, aiming to recommend improvements. The LCA study used cumulative energy demand (CED) and Intergovernmental Panel on Climate Change (IPCC) 2006 life cycle impact assessment (LCIA) methods. For the case study of Mugher cement factory (MCF), the results on energy use intensities showed 3.74, 3.67, and 2.64 GJ/ton of clinker, Ordinary Portland cement (OPC), Pozzolana Portland cement (PPC), respectively. The result revealed MCF's energy use intensity was within the global range of 3.32 to 5.11 GJ/ton of cement production using similar kiln technology. The results on the GHG emissions were 0.87, 0.84, and 0.59 tons of CO2-equivalent/ton of clinker, OPC, and PPC, respectively. Process emissions accounted for 60% of overall CO2 emissions, with energy-related emissions accounting for the remaining 40%. CO2 emissions of MCF are below the global limit of 0.9 tons/ton of clinker, where all energy sources are fossil fuels. However, it is higher than the 0.65 ton/ton of clinker from a moderate rotary kiln in China. MCF used 70% of its total energy sources from imported fossil fuels, and transportation of the imported fuel added 1.2% CO2 to total emissions. A suggested fossil fuel use improvement scenario for MCF, where coffee husk replaces 50% of the imported coal improved the energy intensity, GHG emissions, and total cost of coal in clinker production by 1.2%, 14%, 36%, respectively.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 147-148
Author(s):  
Jason Rowntree ◽  
Paige Stanley ◽  
David Beede ◽  
Marcia DeLonge ◽  
Michael Hamm

Abstract Using life cycle analysis (LCA), several studies have concluded that grass-finished beef systems have greater GHG intensities than feedlot-finished (FL) beef systems. These studies evaluated only one grazing management system– continuous grazing – and assumed steady-state soil carbon (C), to model the grass-finishing environmental impact. However, by managing for more optimal forage growth and recovery, adaptive multi-paddock (AMP) grazing can improve animal and forage productivity, potentially sequestering more soil organic carbon (SOC) than continuous grazing. To examine impacts of AMP grazing and related SOC sequestration on net GHG emissions, a comparative LCA was performed of two different beef finishing systems in the Upper Midwest, USA: AMP grazing and FL. We used on-farm data collected from the Michigan State University Lake City AgBioResearch Center for AMP grazing. Impact scope included GHG emissions from enteric methane, feed production and mineral supplement manufacture, manure, and on-farm energy use and transportation, as well as the potential C sink arising from SOC sequestration. Across-farm SOC data showed a 4-year C sequestration rate of 3.59 Mg C ha−1 yr−1 in AMP grazed pastures. After including SOC in the GHG footprint estimates, finishing emissions from the AMP system were reduced from 9.62 to −6.65 kg CO2-e kg carcass weight (CW)−1, whereas FL emissions increased slightly from 6.09 to 6.12 kg CO2-e kg CW−1 due to soil erosion. This indicates that AMP grazing has the potential to offset GHG emissions through soil C sequestration, and therefore the finishing phase could be a net C sink. However, FL production required only half as much land as AMP grazing. This research suggests that AMP grazing can contribute to climate change mitigation through SOC sequestration and challenges existing conclusions that only feedlot-intensification reduces the overall beef GHG footprint through greater productivity.


2017 ◽  
Vol 194 ◽  
pp. 161-171 ◽  
Author(s):  
Sheng Li ◽  
Lin Gao ◽  
Hongguang Jin

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4237
Author(s):  
Rosaliya Kurian ◽  
Kishor Sitaram Kulkarni ◽  
Prasanna Venkatesan Ramani ◽  
Chandan Swaroop Meena ◽  
Ashok Kumar ◽  
...  

In recent years Asian Nations showed concern over the Life Cycle Assessment (LCA) of their civil infrastructure. This study presents a contextual investigation of a residential apartment complex in the territory of the southern part of India. The LCA is performed through Building Information Modelling (BIM) software embedded with Environmental Product Declarations (EPDs) of materials utilized in construction, transportation of materials and operational energy use throughout the building lifecycle. The results of the study illustrate that cement is the material that most contributes to carbon emissions among the other materials looked at in this study. The operational stage contributed the highest amount of carbon emissions. This study emphasizes variation in the LCA results based on the selection of a combination of definite software-database combinations and manual-database computations used. For this, three LCA databases were adopted (GaBi database and ecoinvent databases through One Click LCA software), and the ICE database was used for manual calculations. The ICE database showed realistic value comparing the GaBi and ecoinvent databases. The findings of this study are valuable for the policymakers and practitioners to accomplish optimization of Greenhouse Gas (GHG) emissions over the building life cycle.


2014 ◽  
Vol 16 (04) ◽  
pp. 1450038 ◽  
Author(s):  
SOFIIA MILIUTENKO ◽  
INGEBORG KLUTS ◽  
KRISTINA LUNDBERG ◽  
SUSANNA TOLLER ◽  
HELGE BRATTEBØ ◽  
...  

Energy use and greenhouse gas (GHG) emissions associated with life cycle stages of road infrastructure are currently rarely assessed during road infrastructure planning. This study examines the road infrastructure planning process, with emphasis on its use of Environmental Assessments (EA), and identifies when and how Life Cycle Assessment (LCA) can be integrated in the early planning stages for supporting decisions such as choice of road corridor. Road infrastructure planning processes are compared for four European countries (Sweden, Norway, Denmark, and the Netherlands). The results show that only Norway has a formalised way of using LCA during choice of road corridor. Only the Netherlands has a requirement for using LCA in the later procurement stage. It is concluded that during the early stages of planning, LCA could be integrated as part of an EA, as a separate process or as part of a Cost-Benefit Analysis.


Sign in / Sign up

Export Citation Format

Share Document