An Investigation of External Gear Pump Efficiency and Stribeck Values

Author(s):  
Paul W. Michael ◽  
Hassan Khalid ◽  
Thomas Wanke
Author(s):  
N.L. Velikanov ◽  
V.A. Naumov

The purpose of the research was to analyze the load characteristics of external gear pumps. As the initial data, the results of factory tests of the NMSH and SH pumps, provided by HMS Livgidromash JSC, were used. The load characteristics of the gear pump NMSH32-10 were constructed, and the dependence of this pump efficiency on the dimensionless pressure and Hersey number was given. The efficiency of the SH 40-4 pump was recalculated according to the test data. Findings of research show that for diesel fuel and oil, the calculated efficiency differs from the values indicated in the technical data sheet by more than 25%, while for fuel oil they differ slightly. This testifies to the non-monotonic dependence between the SH 40-4 pump efficiency and the viscosity. In the entire investigated range of pressures, with an increase in the viscosity of the pumped liquid, the efficiency first increases and then noticeably decreases. The paper presents the dependence of the volumetric and mechanical efficiency of the SH 40-4 pump on the Hersey number at three values of the viscosity of the pumped liquid.


2021 ◽  
Vol 13 (6) ◽  
pp. 3089
Author(s):  
Miquel Torrent ◽  
Pedro Javier Gamez-Montero ◽  
Esteban Codina

This article presents a methodology for predicting the fluid dynamic behavior of a gear pump over its operating range. Complete pump parameterization was carried out through standard tests, and these parameters were used to create a bond graph model to simulate the behavior of the unit. This model was experimentally validated under working conditions in field tests. To carry this out, the pump was used to drive the auxiliary movements of a drilling machine, and the experimental data were compared with a simulation of the volumetric behavior under the same conditions. This paper aims to describe a method for characterizing any hydrostatic pump as a “black box” model predicting its behavior in any operating condition. The novelty of this method is based on the correspondence between the variation of the parameters and the internal changes of the unit when working in real conditions, that is, outside a test bench.


2010 ◽  
Vol 44-47 ◽  
pp. 1767-1772
Author(s):  
De Xin Zhao ◽  
Rui Bo Yuan ◽  
Jing Luo

This article describes the structure of pure water hydraulic external gear pump, structural design and calculation of parameters,analysises the mai spare part material of pure water hydraulic external gear pump and determines the type of the new engineering materials. Besides the surface treatment process of pump are discussed. Pure water hydraulic external gear pump is simulated by FLUENT, obtaining the parameters of the influence of the pump's performance.


Author(s):  
K Foster ◽  
R Taylor ◽  
I M Bidhendi

A description is given of a computer program for investigating the performance of the external gear pumps under varying conditions with the special emphasis on the examination of pressure distributions within the pump, i.e. excitation forces for the vibration of the pump case and the variation in flow generated by the pump. Measurements are presented for the variation with time of tooth space pressure and the results are compared with the theoretical predictions from the computer program.


Author(s):  
G. Mimmi

Abstract In a previous paper the author proposed a method to reduce the periodic variation in flow rate for an external gear pump. To verify the experimental results, a series of experimental tests on a expressly realized gear pump, was carried out. The pump was equipped with relieving grooves milled into the side plates. The tests were done on a closed piping specifically realized and equipped for measuring the instantaneous flow rate of the fluid through a wedge-shaped hot film probe.


2020 ◽  
Vol 36 (4) ◽  
pp. 567-575
Author(s):  
A. Abdellah El-Hadj ◽  
Shayfull Zamree Bin Abd Rahim

ABSTRACTDesign of a new gear pump requires many considerations to get good pump efficiency. In order to achieve optimal results, all parameters must be optimized from the design stage. In this study, ANSYS CFX was used to make parametric analysis in order to optimize a new design of gear pump. Two parameters which are inlet diameter and rotation speed are considered. The response surface method gives an optimum design point for inlet diameter of 15mm and rotation speed of 3500 rev/min. Twin vortices are created in the inlet and the outlet of pump, which strangle the flow. In order to reduce their negative effects on the flow, fillets are created at the inlet and the outlet of the pump.


Sign in / Sign up

Export Citation Format

Share Document