Future Gasoline Engine Technology and the Effect on Thermal Management and Real World Fuel Consumption

Author(s):  
James Miller ◽  
James Taylor ◽  
Paul Freeland ◽  
Marco Warth ◽  
Rene Dingelstadt ◽  
...  
2021 ◽  
Vol 12 (3) ◽  
pp. 113-124 ◽  
Author(s):  
Omid Ghaffarpasand ◽  
Mohammad Reza Talaie ◽  
Hossein Ahmadikia ◽  
Amirreza Talaie Khozani ◽  
Maryam Davari Shalamzari ◽  
...  

2011 ◽  
Vol 230-232 ◽  
pp. 178-182
Author(s):  
Bai Xue Fu ◽  
Sheng Hai Hu

Sensor technology and computer control technology are applied to automobile fuel consumption testing in the automobile industry developed countries, the function and precision of the test are developing and perfecting continually. In our country, automobile fuel consumption test mainly applies ordinary consumption test devices, that test item are single-chip, which is applied for testing the flow of time. The display of method mainly based on the pointer instrument and partially on circuit control, so the maintenance and reliability of the test does not excellent. We do research and develop the intelligent one which is called quick testing instrument for automobile fuel consumption, which applies sensor technology, computer control technology and advanced instrument technology, that can be applied for the testing for automobile fuel consumption and data show. It can improve the measurement precision of automobile fuel consumption and degree of automation, with the down cost as high cost-effective consequences. The test instrument can be used for testing instantaneous fuel consumption, average fuel consumption and accumulative total consumption of gasoline engine and diesel engine.


2011 ◽  
Vol 317-319 ◽  
pp. 1999-2006
Author(s):  
Yu Wan ◽  
Ai Min Du ◽  
Da Shao ◽  
Guo Qiang Li

According to the boost mathematical model verified by experiments, the valve train of traditional gasoline engine is optimized and improved to achieve extended expansion cycle. The simulation results of extended expansion gasoline engine shows that the extended expansion gasoline engine has a better economic performance, compared to traditional gasoline engines. The average brake special fuel consumption (BSFC) can reduce 22.78 g / kW•h by LIVC, but the negative impacts of extended expansion gasoline engine restrict the potential of extended expansion gasoline engine. This paper analyzes the extended expansion gasoline engine performance under the influence of LIVC, discusses the way to further improve extended expansion gasoline engine performance.


2018 ◽  
Vol 191 ◽  
pp. 249-257 ◽  
Author(s):  
Xianbao Shen ◽  
Jiacheng Shi ◽  
Xinyue Cao ◽  
Xin Zhang ◽  
Wei Zhang ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Wei Duan ◽  
Zhaoming Huang ◽  
Hong Chen ◽  
Ping Tang ◽  
Li Wang ◽  
...  

Pre-chamber jet ignition is a promising way to improve fuel consumption of gasoline engine. A small volume passive pre-chamber was tested at a 1.5L turbocharged GDI engine. Combustion and emission characteristics of passive pre-chamber at low-speed WOT and part load were studied. Besides, the combustion stability of the passive pre-chamber at idle operation has also been studied. The results show that at 1500 r/min WOT, compared with the traditional spark ignition, the combustion phase of pre-chamber is advanced by 7.1°CA, the effective fuel consumption is reduced by 24 g/kW h, and the maximum pressure rise rate is increased by 0.09 MPa/°CA. The knock tendency can be relieved by pre-chamber ignition. At part load of 2000 r/min, pre-chamber ignition can enhance the combustion process and improve the combustion stability. The fuel consumption of pre-chamber ignition increases slightly at low load, but decreases significantly at high load. Compared with the traditional spark ignition, the NOx emissions of pre-chamber increase significantly, with a maximum increase of about 15%; the HC emissions decrease, and the highest decrease is about 36%. But there is no significant difference in CO emissions between pre-chamber ignition and spark plug ignition. The intake valve opening timing has a significant influence on the pre-chamber combustion stability at idle operation. With the delay of the pre-chamber intake valve opening timing, the CoV is reduced and can be kept within the CoV limit.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


Sign in / Sign up

Export Citation Format

Share Document