New MAC Technologies: Fuel Efficiency Effect in Real Driving of the Air Intake Flap Management

Author(s):  
Roberto Monforte ◽  
Francesco Lovuolo ◽  
Matteo Rostagno ◽  
Riccardo Seccardini ◽  
Teron Matton
Author(s):  
N.S. Mustafa ◽  
N.H.A. Ngadiman ◽  
M.A. Abas ◽  
M.Y. Noordin

Fuel price crisis has caused people to demand a car that is having a low fuel consumption without compromising the engine performance. Designing a naturally aspirated engine which can enhance engine performance and fuel efficiency requires optimisation processes on air intake system components. Hence, this study intends to carry out the optimisation process on the air intake system and airbox geometry. The parameters that have high influence on the design of an airbox geometry was determined by using AVL Boost software which simulated the automobile engine. The optimisation of the parameters was done by using Design Expert which adopted the Box-Behnken analysis technique. The result that was obtained from the study are optimised diameter of inlet/snorkel, volume of airbox, diameter of throttle body and length of intake runner are 81.07 mm, 1.04 L, 44.63 mm and 425 mm, respectively. By using these parameters values, the maximum engine performance and minimum fuel consumption are 93.3732 Nm and 21.3695×10-4 kg/s, respectively. This study has fully accomplished its aim to determine the significant parameters that influenced the performance of airbox and optimised the parameters so that a high engine performance and fuel efficiency can be produced. The success of this study can contribute to a better design of an airbox.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
M. Naveen Kumar ◽  
Vishal Jagota ◽  
Mohammad Shabaz

This article describes the power train design specifics in Formula student race vehicles used in the famed SAE India championship. To facilitate the physical validation of the design of the power train system of a formula student race car category vehicle engine of 610 cc displacement bike engine (KTM 390 model), a detailed design has been proposed with an approach of easing manufacturing and assembly along with full-scale prototype manufacturing. Many procedures must be followed while selecting a power train, such as engine displacement, fuel type, cooling type, throttle actuation, and creating the gear system to obtain the needed power and torque under various loading situations. Keeping the rules in mind, a well-suited engine was selected for the race track and transmission train was selected which gives the maximum performance. Based on the requirement, a power train was designed with all considerations we need to follow. Aside from torque and power, we designed an air intake with fuel efficiency in mind. Wireless sensors and cloud computing were used to monitor transmission characteristics such as transmission temperature management and vibration. The current study describes the design of an air intake manifold with a maximum restrictor diameter of 20 mm.


Author(s):  
О. Д. Донець ◽  
В. П. Іщук

The basic results of calculation and research works carried out in the process of creation of power unit of regional passenger airplanes’ family are given. The design features of the propulsion engines and engine of the auxiliary power plant are described. The aforementioned propulsion system includes propulsion engines D-436-148 and engine AI-450-MS of auxiliary power plant. In order to comply with the requirements of Section 4 of the ICAO standard (noise reduction of the aircraft in site), in part of ensuring the noise reduction of engines, when creating the power plant of the An-148/An-158 aircraft family, a single- and double-layer acoustic filler was used in the structure of the engine nacelle and air intake. The use of electronic system for automatic control of propulsion engines such as FADEC and its integration into the digital airborne aircraft complex ensured the operation of engines, included in the power plant provided with high specific fuel consumption, as well as increased the level of automation of the power plant control and monitoring, and ensured aircraft automation landing in ICAO category 3A. In addition, the use of the aforementioned electronic system, allowed to operate the power plant of the aircraft in accordance with technical status. The use of the AI-450-MS auxiliary power plant with an electronic control system such as FADEC, and the drive of the service compressor from a free turbine, eliminated the effect of changes in power and air takeoff, on the deviation of the engine from optimal mode, which also minimized the fuel consumption. The use of fuel metering system TIS-158, allowed to ensure control of its condition and assemblies, without the use of auxiliary devices, built-in control means. In the fire protection system, the use of the electronic control and monitor unit, as well as the use of digital serial code for the exchange of information between the elements of the system and the aircraft systems, has reduced the number of connections, which increased the reliability of the system and reduced its weight characteristics.


2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan V. Egorov
Keyword(s):  

1987 ◽  
Vol 15 (1) ◽  
pp. 3-29 ◽  
Author(s):  
K. Yamagishi ◽  
M. Togashi ◽  
S. Furuya ◽  
K. Tsukahara ◽  
N. Yoshimura

Abstract The Rolling Contour Optimization Theory (RCOT) can lead to improved steering, fuel efficiency, riding comfort, and braking performance of tires relative to those of conventional shape. The conventional shape has been guided by natural equilibrium profiles, while the RCOT technology shape is guided by that of the tire in motion. This reduces useless distortions caused by running the tire under load. The RCOT design focuses on the distribution of belt and sidewall tension in the tire. Controlling tension in the belt and carcass area while the tire is in motion was the key to creating this new tire shape.


Author(s):  
Michelle Kirby ◽  
Dongwook Lim ◽  
Taewoo Nam ◽  
Graham A. Burdette ◽  
Bryan Boling
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document