scholarly journals Retrospection of the Optimization Model for Designing the Power Train of a Formula Student Race Car

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
M. Naveen Kumar ◽  
Vishal Jagota ◽  
Mohammad Shabaz

This article describes the power train design specifics in Formula student race vehicles used in the famed SAE India championship. To facilitate the physical validation of the design of the power train system of a formula student race car category vehicle engine of 610 cc displacement bike engine (KTM 390 model), a detailed design has been proposed with an approach of easing manufacturing and assembly along with full-scale prototype manufacturing. Many procedures must be followed while selecting a power train, such as engine displacement, fuel type, cooling type, throttle actuation, and creating the gear system to obtain the needed power and torque under various loading situations. Keeping the rules in mind, a well-suited engine was selected for the race track and transmission train was selected which gives the maximum performance. Based on the requirement, a power train was designed with all considerations we need to follow. Aside from torque and power, we designed an air intake with fuel efficiency in mind. Wireless sensors and cloud computing were used to monitor transmission characteristics such as transmission temperature management and vibration. The current study describes the design of an air intake manifold with a maximum restrictor diameter of 20 mm.

Author(s):  
Barhm Mohamad ◽  
Jalics Karoly ◽  
Andrei A. Zelentsov

Formula Student Car (FS) is an international race car design competition for students at universities of applied sciences and technical universities. The winning team is not the one that produces the fastest racing car, but the group that achieves the highest overall score in design, racing performance. The arrangement of internal components for example, predicting aerodynamics of the air intake system is crucial to optimizing car performance as speed changes. The air intake system consists of an inlet nozzle, throttle, restrictor, air box and cylinder suction pipes (runners). The paper deals with the use of CFD numerical simulations during the design and optimization of components. In this research article, two main steps are illustrated to develop carefully the design of the air box and match it with the suction pipe lengths to optimize torque over the entire range of operating speeds. Also the current intake system was assessed acoustically and simulated by means of 1-D gas dynamics using the software AVL-Boost. In this manner, before a new prototype intake manifold is built, the designer can save a substantial amount of time and resources. The results illustrate the improvement of simulation quality using the new models compared to the previous AVL-Boost models


Author(s):  
N.S. Mustafa ◽  
N.H.A. Ngadiman ◽  
M.A. Abas ◽  
M.Y. Noordin

Fuel price crisis has caused people to demand a car that is having a low fuel consumption without compromising the engine performance. Designing a naturally aspirated engine which can enhance engine performance and fuel efficiency requires optimisation processes on air intake system components. Hence, this study intends to carry out the optimisation process on the air intake system and airbox geometry. The parameters that have high influence on the design of an airbox geometry was determined by using AVL Boost software which simulated the automobile engine. The optimisation of the parameters was done by using Design Expert which adopted the Box-Behnken analysis technique. The result that was obtained from the study are optimised diameter of inlet/snorkel, volume of airbox, diameter of throttle body and length of intake runner are 81.07 mm, 1.04 L, 44.63 mm and 425 mm, respectively. By using these parameters values, the maximum engine performance and minimum fuel consumption are 93.3732 Nm and 21.3695×10-4 kg/s, respectively. This study has fully accomplished its aim to determine the significant parameters that influenced the performance of airbox and optimised the parameters so that a high engine performance and fuel efficiency can be produced. The success of this study can contribute to a better design of an airbox.


Vehicles ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 127-144
Author(s):  
Andoni Medina ◽  
Guillermo Bistue ◽  
Angel Rubio

Direct Yaw Moment Control (DYC) is an effective way to alter the behaviour of electric cars with independent drives. Controlling the torque applied to each wheel can improve the handling performance of a vehicle making it safer and faster on a race track. The state-of-the-art literature covers the comparison of various controllers (PID, LPV, LQR, SMC, etc.) using ISO manoeuvres. However, a more advanced comparison of the important characteristics of the controllers’ performance is lacking, such as the robustness of the controllers under changes in the vehicle model, steering behaviour, use of the friction circle, and, ultimately, lap time on a track. In this study, we have compared the controllers according to some of the aforementioned parameters on a modelled race car. Interestingly, best lap times are not provided by perfect neutral or close-to-neutral behaviour of the vehicle, but rather by allowing certain deviations from the target yaw rate. In addition, a modified Proportional Integral Derivative (PID) controller showed that its performance is comparable to other more complex control techniques such as Model Predictive Control (MPC).


Author(s):  
A. K. Rakhit ◽  
G. A. Cornejo ◽  
G. J. Lack

Epicyclic gearboxes of star configuration running at partial loads were found to induce non-synchronous (not related to speed) low-frequency vibrations, besides low level sub-synchronous (speed related) which were transmitted to other parts of a turbogenerator power train. At certain loads, the amplitudes of the non-synchronous vibrations were high enough to cause potential damage to sleeve bearings used in the power train system if a generator set would run for any considerable length of time at these loads. It was also observed that a very small increase in load above a certain limit (about 18% of full load) resulted in almost total elimination of these vibrations. Analysis of test data showed the non-synchronous vibrations were due to ‘backward whirl’ motion of gearbox output shaft in its sleeve bearings. Higher damping in the bearings was considered to be one of the most effective methods to suppress backward whirl of a shaft and hence, the non-synchronous vibrations. Accordingly, a new set of gearbox output shaft sleeve bearings was designed for higher damping that would allow these types of generator sets to run at partial and full loads without any detrimental vibration.


2009 ◽  
Author(s):  
Minoru Matsunaga ◽  
Tatsuya Fukushima ◽  
Kuniaki Ojima

Author(s):  
Joseph Katz

Motor racing, like other popular forms of competitive sports, requires physical fitness, concentration, and vigorous preparation and training. Although progress in technology may dominate the race, governing bodies are continuously updating the rulebooks to keep the human factor dominant in winning races. On the other hand, vehicle performance depends on elements such as the engine, tires, suspension, road, and aerodynamics. In recent years, however, vehicle aerodynamics has gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several significant performance improvements. The importance of drag reduction and improved fuel efficiency are easily understood by the novice observer and are still at the center of racing vehicle design. Interestingly, however, generating downforce by the vehicle usually increases its drag but improves average speed in closed circuits. Consequently, various methods to generate downforce such as inverted wings, diffusers, and vortex generators will be discussed. Also, generic trends connecting a vehicle’s shape to its aerodynamics are presented, followed by more specific race-car examples. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and wing shapes which may be different than those used on airplanes.


Author(s):  
Kyle A. Schroeckenthaler ◽  
Stephen S. Fitzroy

This paper explores the feasibility and sensitivity of a mileage-based road usage charge (RUC) as an alternative to the gas tax. The specific purpose is to evaluate factors that could be considered when setting a charge to account for the complex makeup of statewide motor fleets, and to consider the diversity of household driving behaviors and experiences. The researchers considered a range of potential parameters before choosing to focus on fuel type and fuel efficiency. If based on annually adjusted efficiency quantiles, a parameterized RUC could prevent revenue erosion over time. Formulas based on these parameters were compared with the current fuel excise tax and a flat RUC. Distributional effects of parameters were assessed for urban, mixed, and rural household categories, and for vehicles of different fuel types. Results show that households in urban tracts tend to pay slightly more under all formulations, and households in mixed and rural tracts pay less compared with an excise-based gas tax. In addition to changes across regions of a state, the method allows examination of the groups within these categories. Research found that adjusting for fuel efficiency reduced the change in incidence between urban, mixed, and rural census tracts, and between fuel types, that results from moving to a flat RUC. Fuel type parameters resulted in only small differences from the flat rate RUC because of low alternative fuel penetration in most states. This may change over time depending on the rate of integration of alternative fuels into the passenger car fleet.


2011 ◽  
Vol 127 ◽  
pp. 233-236
Author(s):  
Tao He ◽  
Li Xin Meng ◽  
Zhi Qiang Liu

As technology and equipment improves, the horizontal directional driller was gradually accepted in the developed countries in the 1980s. With the rapid construction of urbanization, non-excavating technology is widely used in China. In this paper, a new kind of hybrid technology in the horizontal directional driller is presented. Taking HL518B as a prototype, a parallel hybrid system is designed .The control strategy of the hybrid horizontal directional driller is analyzed on the basis of the several operations in the working cycle. The control goal of whole system is to realize the torque demand of loading. Research is made on how to transform the single engine power into the hybrid power train, At same time the model of hybrid system is established and simulated. The simulation results show the hybrid system can effectively improve the horizontal directional driller fuel economy.


2015 ◽  
Author(s):  
Roberto Monforte ◽  
Francesco Lovuolo ◽  
Matteo Rostagno ◽  
Riccardo Seccardini ◽  
Teron Matton

Sign in / Sign up

Export Citation Format

Share Document