A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020 ◽  
Author(s):  
Varun Nichani ◽  
Zhuoyu Zhou ◽  
Haiyang Gao ◽  
Scott Gendron ◽  
Jeff Schlautman ◽  
...  
Author(s):  
Luis San Andrés ◽  
Feng Yu ◽  
Kostandin Gjika

Engine oil lubricated (semi) floating ring bearing (S)FRB systems in passenger vehicle turbochargers (TC) operate at temperatures well above ambient and must withstand large temperature gradients that can lead to severe thermo-mechanical induced stresses. Physical modeling of the thermal energy flow paths and an effective thermal management strategy are paramount to determine safe operating conditions ensuring the TC component mechanical integrity and the robustness of its bearing system. On occasion, the selection of one particular bearing parameter to improve a certain performance characteristic could be detrimental to other performance characteristics of a TC system. The paper details a thermohydrodynamic model to predict the hydrodynamic pressure and temperature fields and the distribution of thermal energy flows in the bearing system. The impact of the lubricant supply conditions (pressure and temperature), bearing film clearances, oil supply grooves on the ring ID surface are quantified. Lubricating a (S)FRB with either a low oil temperature or a high supply pressure increases (shear induced) heat flow. A lube high supply pressure or a large clearance allow for more flow through the inner film working towards drawing more heat flow from the hot journal, yet raises the shear drag power as the oil viscosity remains high. Nonetheless, the peak temperature of the inner film is not influenced much by the changes on the way the oil is supplied into the film as the thermal energy displaced from the hot shaft into the film is overwhelming. Adding axial grooves on the inner side of the (S)FRB improves its dynamic stability, albeit increasing the drawn oil flow as well as the drag power and heat flow from the shaft. The predictive model allows to identify a compromise between different parameters of groove designs thus enabling a bearing system with a low power consumption.


Author(s):  
Said H. Audi ◽  
Swetha Ganesh ◽  
Pardis Taheri ◽  
Xiao Zhang ◽  
Ranjan K. Dash ◽  
...  

Dissipation of mitochondrial membrane potential (Δψm) is a hallmark of mitochondrial dysfunction. our objective was to use a previously developed experimental-computational approach to estimate tissue Δψm in intact lungs of rats exposed to hyperoxia, and to evaluate the ability of duroquinone (DQ) to reverse any hyperoxia-induced depolarization of lung Δψm. Rats were exposed to hyperoxia (>95% O2) or normoxia (room air) for 48 hrs, after which lungs were excised and connected to a ventilation-perfusion system. The experimental protocol consisted of measuring the concentration of the fluorescent dye rhodamine 6G (R6G) during three single-pass phases: loading, washing, and uncoupling, in which the lungs were perfused with and without R6G, and with the mitochondrial uncoupler FCCP, respectively. For normoxic lungs, the protocol was repeated with 1) rotenone (complex I inhibitor), 2) rotenone and either DQ or its vehicle (DMSO), and 3) rotenone, glutathione (GSH), and either DQ or DMSO added to the perfusate. Hyperoxic lungs were studied with and without DQ and GSH added to the perfusate. Computational modeling was used to estimate lung Δψm from R6G data. Rat exposure to hyperoxia resulted in partial depolarization (-33 mV) of lung Δψm, and complex I inhibition depolarized lung Δψm by -83 mV. Results also demonstrate the efficacy of DQ to fully reverse both rotenone-induced and hyperoxia-induced lung Δψm depolarization. This study demonstrates hyperoxia-induced Δψm depolarization in intact lungs, and the utility of this approach for assessing the impact of potential therapies such as exogenous quinones that target mitochondria in intact lungs.


2014 ◽  
Vol 630 ◽  
pp. 52-60 ◽  
Author(s):  
Przemyslaw Szulc

The radial labyrinth pump consists of two discs: passive and active. Both discs are equipped in special blades with the opposite angle of milling. The passive disc is motionless and the active one rotates around the axis of the pump. On the surface of the connection of two blades belonging to different discs the circulation of fluid, as a type of energy conversion is expected. To investigate the analysed set of discs and take into consideration the impact of some structural changes of the geometry of both discs on a pump performance the numerical simulations were made. In this paper the results of CFD research of the flow in the radial labyrinth pump are presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Naveed Khan ◽  
Farhad Ali ◽  
Muhammad Arif ◽  
Zubair Ahmad ◽  
Aamina Aamina ◽  
...  

The aim of this study is to investigate how heat and mass transfer impacts the unsteady incompressible flow of Maxwell fluid. An infinite vertical plate with ramped and isothermal wall temperature and concentration boundary conditions is considered with the Maxwell fluid. Furthermore, in this study, engine oil has been taken as a base fluid due to its enormous applications in modern science and technologies. To see the importance of nanofluids, we have suspended molybdenum disulfide in engine oil base fluid to enhance its heat transfer rate. To investigate the flow regime, the system of equations was derived in the form of partial differential equations. The exact solutions to the complex system are obtained using the Laplace transform technique. Graphically, the impact of different embedded parameters on velocity, temperature, and concentration distributions has been shown. Through using the graphical analysis, we were interested in comparing the velocity, temperature, and concentration profiles for ramped and isothermal wall temperature and concentration. The magnitude of velocity, temperature, and concentration distributions is greater for an isothermal wall and less for a ramped wall, according to our observations. We observed that adding molybdenum disulfide nanoparticles to the engine oil increased the heat transfer up to 12.899%. Finally, the corresponding skin friction, Nusselt number, and Sherwood number have been calculated and presented in a tabular form.


Author(s):  
Rahila Sardar ◽  
Deepshikha Satish ◽  
Shweta Birla ◽  
Dinesh Gupta

AbstractThe ongoing pandemic of the coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). We have performed an integrated sequence-based analysis of SARS-CoV2 genomes from different geographical locations in order to identify its unique features absent in SARS-CoV and other related coronavirus family genomes, conferring unique infection, facilitation of transmission, virulence and immunogenic features to the virus. The phylogeny of the genomes yields some interesting results. Systematic gene level mutational analysis of the genomes has enabled us to identify several unique features of the SARS-CoV2 genome, which includes a unique mutation in the spike surface glycoprotein (A930V (24351C>T)) in the Indian SARS-CoV2, absent in other strains studied here. We have also predicted the impact of the mutations in the spike glycoprotein function and stability, using computational approach. To gain further insights into host responses to viral infection, we predict that antiviral host-miRNAs may be controlling the viral pathogenesis. Our analysis reveals nine host miRNAs which can potentially target SARS-CoV2 genes. Interestingly, the nine miRNAs do not have targets in SARS and MERS genomes. Also, hsa-miR-27b is the only unique miRNA which has a target gene in the Indian SARS-CoV2 genome. We also predicted immune epitopes in the genomes


Author(s):  
Maxim Igorevich Tarasov ◽  
Georgy Alexandrovich Gauk ◽  
Liudmila Anatolievna Semeniuk

The results of modeling the impact of oil burning on the condition of the ship forced trunk piston diesel engine when using lubricants with different operating properties. The dependence of wear rate on oil fume, the quality of used lubricants and marine diesel forcing is obtained by modeling wear using the theory of planning experiments. The area of minimal wear has been determined. There has been detected the most efficient waste oil providing favorable conditions for resource-saving operation of the internal combustion engine. It is inferred that reduction of engine oil fume changes the main parameters of its aging. At the same time, the intensity of oil aging in main directions and of engine wear reduce from 0.75 to 2.25 g/(kW∙h), whereas the fume increases. Its further increase is accompanied by an increase in the rate of oil aging and engine wear. The detected "fracture" depending on И( g y) after passing the border g yopt = 2.25-2.5 g/(kW∙h) is stipulated by different ratio of oil exchange in the lubrication system and the ingress of gases into the crankcase. There has been determined the degree of oil burning, at which sludging and lacquer formation of the internal combustion engine is least intense. The smallest carbon deposits on pistons and in the crankcase of the engine can be observed when the diesel engine is operating in the zone of optimal carbonation. Experimentally, the dependence of tribotechnical properties, in particular, wear of insoluble products of oil aging has been detected at different degrees of oil burning. It is revealed that these characteristics also depend on the quality of the used fuels and lubricants and the conditions of formation and turnover of the oil film on the mirror of the cylinder, the thermal effect on it of the engine workflow. The result of simulation is the prediction of resource-saving operation of marine trunk diesel engines by maintaining oil fume at the optimal level.


Author(s):  
O. I. Akpokodje ◽  
H. Uguru

This study investigated the impact of petroleum products on the physiochemical properties, heavy metals and THC of soil samples; and their possible phytoremediation. Perforated plastic buckets were filled with 10 kg of sieved virgin topsoil. A mixture of 2 L of spent engine oil, 2 L of kerosene, 2 L of petrol and 2 L of diesel was gradually poured into each bucket and allowed to drain through the soil, once a day for five days, and there after left to stabilize for a period of 21 days. Fluted pumpkin (Telforia Occidentalis) and Okra (Abelmoschus esculentus, Cv. Kirikou) seeds were planted in buckets and closely monitored for 14 weeks. Soil analysis of the virgin topsoil, contaminated soil and remediated soil was done using standard methods. Tests results showed that the petroleum products significantly (p ≤0.05) altered the physicochemical properties, heavy metals and THC of the soil. From the results, the soil porosity decreased from 35% to 14%; specific gravity decreased from 2.34 to 1.35; the soil pH decreased from 7.05 to 5.34; the THC increased from 0,923 mg/kg to 964.35 mg/kg; copper level increased from 4.892 mg/kg to 7.729 mg/kg; the lead content increased from <0.0001 mg/kg to 1.128 mg/kg; while the iron content increased from 1251.2 mg/kg to 1587.9 mg/kg after the contamination. After the 14 weeks phytoremediation period, Telfairia occidentalis was able to degrade the THC in the soil from 964.35 mg/kg to 82.67 mg/kg; while Abelmoschus esculentus degraded the THC in the soil from 964.35 mg/kg to 104 mg/kg. Therefore, due to the harmful effects of the petroleum products on agricultural soils, laws banning their indiscriminate disposal of should be enforced.


2021 ◽  
Vol 13 (1) ◽  
pp. 31-45
Author(s):  
S. Hazarika ◽  
S. Ahmed

An analysis is conducted to investigate the problem of heat/mass transfer in MHD free convective flow of Casson-fluid in a vertical channel embedded with saturated porous medium past through carbon nanotubes in the form of single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs) with engine oil as base fluid. In this article, the impact of CNT’s on velocity, temperature, shear stress and rate of heat transfer of the nanofluid has been investigated and studied graphically for the effects of different key physical parameters involved. The validity of this flow model is presented and is found satisfactory agreement with published results. The results state that, fluid velocity accelerates for greater values of Casson parameter and nanoparticles volume fraction, while thermal radiation (R) and heat generation (Q) assume a significant role in CNT's. Applications of this study arise in broad area of science and engineering such as thermal conductivity, energy storage, biomedical applications, air and water filtration, fibers and fabrics.


Sign in / Sign up

Export Citation Format

Share Document