Strain Amount and Strain Path Effects on Instrumented Charpy Toughness of Baked Third Generation Advanced High Strength Steels

2021 ◽  
Author(s):  
Adam D. Hodges ◽  
Sarah Tedesco ◽  
Lindsay Golem ◽  
Gang Huang
Author(s):  
Tarun Nanda ◽  
Vishal Singh ◽  
Virender Singh ◽  
Arnab Chakraborty ◽  
Sandeep Sharma

The automobile industry is presently focusing on processing of advanced steels with superior strength–ductility combination and lesser weight as compared to conventional high-strength steels. Advanced high-strength steels are a new class of materials to meet the need of high specific strength while maintaining the high formability required for processing, and that too at reasonably low cost. First and second generation of advanced high-strength steels suffered from some limitations. First generation had high strength but low formability while second generation possessed both strength and ductility but was not cost effective. Amongst the different types of advanced high-strength steels grades, dual-phase steels, transformation-induced plasticity steels, and complex phase steels are considered as very good options for being extended into third generation advanced high-strength steels. The present review presents the various processing routes for these grades developed and discussed by different authors. A novel processing route known as quenching and partitioning route is also discussed. The review also discusses the resulting microstructures and mechanical properties achieved under various processing conditions. Finally, the key findings with regards to further research required for the processing of advanced high-strength steels of third generation have been discussed.


2010 ◽  
Vol 89-91 ◽  
pp. 214-219 ◽  
Author(s):  
David Gutiérrez ◽  
A. Lara ◽  
Daniel Casellas ◽  
Jose Manuel Prado

The Forming Limit Diagrams (FLD) are widely used in the formability analysis of sheet metal to determine the maximum strain, which gives the Forming Limit Curve (FLC). It is well known that these curves depend on the strain path during forming and hence on the test method used to calculate them. In this paper, different stretching tests such as the Nakajima and the Marciniak tests were performed, with different sample geometries to obtain points in different areas of the FLD. An optical analysis system was used, which allows following the strain path during the test. The increasing use of advanced high-strength steels (AHSS) has created an interest in determining the mechanical properties of these materials. In this work, FLCs for a TRIP steel were determined using Nakajima and Marciniak tests, which revealed different strain paths depending on the type of test. Determination of the FLCs was carried out following the mathematical calculations indicated in the ISO 12004 standard and was also compared with an alternative mathematical method, which showed different FLCs. Finally, the tests were verified by comparing the strain paths of the Nakajima and Marciniak tests with a well-known mild steel.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1051 ◽  
Author(s):  
António B. Pereira ◽  
Rafael O. Santos ◽  
Bruno S. Carvalho ◽  
Marilena C. Butuc ◽  
Gabriela Vincze ◽  
...  

To meet the demands of vehicular safety and greenhouse gas emission reduction, the automotive industry is increasingly using advanced high strength steels (AHSS) in the production of the components. With the development of the new generation of AHSS, it is essential to study their behavior towards manufacturing processes used in the automotive industry. For this purpose, the welding capability of newly developed third-generation Gen3 980T steel was investigated using the Nd:YAG (Neodymium:Yittrium Aluminum Garnet) laser-welding with different parameter conditions. The analysis was made by uniaxial tensile tests, micro-hardness, Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The criteria used to evaluate the quality of the weld were the distance between the fracture and the weld bead and the surface finish. A relationship between the quality of the weld and the energy density was observed, expressed by a partial penetration for values below the optimal, and by irregularities in the weld bead and a high number of spatters for the values above the optimal.


Sign in / Sign up

Export Citation Format

Share Document