scholarly journals The Effect of Cross-Flow Vortex Trap Devices on the Aerodynamic Drag of Road Haulage Vehicles

2021 ◽  
Author(s):  
Joseph Story ◽  
Isabel Vallina Garcia ◽  
Holger Babinsky
1998 ◽  
Vol 368 ◽  
pp. 339-357 ◽  
Author(s):  
MARKUS HÖGBERG ◽  
DAN HENNINGSON

Linear eigenvalue calculations and spatial direct numerical simulations (DNS) of disturbance growth in Falkner–Skan–Cooke (FSC) boundary layers have been performed. The growth rates of the small-amplitude disturbances obtained from the DNS calculations show differences compared to linear local theory, i.e. non-parallel effects are present. With higher amplitude initial disturbances in the DNS calculations, saturated cross-flow vortices are obtained. In these vortices strong shear layers appear. When a small random disturbance is added to a saturated cross-flow vortex, a low-frequency mode is found located at the bottom shear layer of the cross-flow vortex and a high-frequency secondary instability is found at the upper shear layer of the cross-flow vortex. The growth rates of the secondary instabilities are found from detailed analysis of simulations of single-frequency disturbances. The low-frequency disturbance is amplified throughout the domain, but with a lower growth rate than the high-frequency disturbance, which is amplified only once the cross-flow vortices have started to saturate. The high-frequency disturbance has a growth rate that is considerably higher than the growth rates for the primary instabilities, and it is conjectured that the onset of the high-frequency instability is well correlated with the start of transition.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Jie Wu ◽  
Decao Yin ◽  
Elizabeth Passano ◽  
Halvor Lie ◽  
Ralf Peek ◽  
...  

Abstract Helical strakes can suppress vortex-induced vibrations (VIVs) in pipelines spans and risers. Pure in-line (IL) VIV is more of a concern for pipelines than for risers. To make it possible to assess the effectiveness of partial strake coverage for this case, an important gap in the hydrodynamic data for strakes is filled by the reported IL forced-vibration tests. Therein, a strake-covered rigid cylinder undergoes harmonic purely IL motion while subject to a uniform “flow” created by towing the test rig along SINTEF Ocean's towing tank. These tests cover a range of frequencies, and amplitudes of the harmonic motion to generate added-mass and excitation functions are derived from the in-phase and 90 deg out-of-phase components of the hydrodynamic force on the pipe, respectively. Using these excitation- and added-mass functions in VIVANA together with those from experiments on bare pipe by Aronsen (2007 “An Experimental Investigation of In-Line and Combined In-Line and Cross-Flow Vortex Induced Vibrations,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.), the IL VIV response of partially strake-covered pipeline spans is calculated. It is found that as little as 10% strake coverage at the optimal location effectively suppresses pure IL VIV.


Author(s):  
Decao Yin ◽  
Elizabeth Passano ◽  
Carl M. Larsen

Slender marine structures are subjected to ocean currents, which can cause vortex-induced vibrations (VIV). Accumulated damage due to VIV can shorten the fatigue life of marine structures, so it needs to be considered in the design and operation phase. Semi-empirical VIV prediction tools are based on hydrodynamic coefficients. The hydrodynamic coefficients can either be calculated from experiments on flexible beams by using inverse analysis or theoretical methods, or obtained from forced motion experiments on a circular cylinder. Most of the forced motion experiments apply harmonic motions in either in-line (IL) or crossflow (CF) direction. Combined IL and CF forced motion experiments are also reported. However, measured motions from flexible pipe VIV tests contain higher order harmonic components, which have not yet been extensively studied. This paper presents results from conventional forced motion VIV experiments, but using measured motions taken from a flexible pipe undergoing VIV. The IL excitation coefficients were used by semi-empirical VIV prediction software vivana to perform combined IL and CF VIV calculation. The key IL results are compared with Norwegian Deepwater Programme (NDP) flexible pipe model test results. By using present IL excitation coefficients, the prediction of IL responses for combined IL and CF VIV responses is improved.


Author(s):  
M. Häfele ◽  
J. Starzmann ◽  
M. Grübel ◽  
M. Schatz ◽  
D. M. Vogt ◽  
...  

A numerical study on the flow in a three stage low pressure industrial steam turbine with conical friction bolts in the last stage and lacing wires in the penultimate stage is presented and analyzed. Structured high-resolution hexahedral meshes are used for all three stages and the meshing methodology is shown for the rotor with friction bolts and blade reinforcements. Modern three-dimensional CFD with a non-equilibrium wet steam model is used to examine the aero-thermodynamic effects of the part-span connectors. A performance assessment of the coupled blades at part load, design and overload condition is presented and compared with measurement data from an industrial steam turbine test rig. Detailed flow field analyses and a comparison of blade loading between configurations with and without part-span connectors are presented in this paper. The results show significant interaction of the cross flow vortex along the part-span connector with the blade passage flow causing aerodynamic losses. This is the first time that part-span connectors are being analyzed using a non-equilibrium wet steam model. It is shown that additional wetness losses are induced by these elements.


2013 ◽  
Vol 122 ◽  
pp. 155-163 ◽  
Author(s):  
Rémi Bourguet ◽  
George Em Karniadakis ◽  
Michael S. Triantafyllou

Author(s):  
Erik Asp Hansen ◽  
Mads Bryndum ◽  
Stefan Mayer

VIV in pipeline and risers has been studied through numerous experimental investigations using simplified model set-up, consisting of spring mounted rigid cylinders. Models have been constructed to allow in-line, cross-flow, or both in-line and cross-flow motions. Comparison of the model results shows overall agreement, although distinct differences exist between the individual model test series. Different explanation models have been established to try to improve the consistency, however, seldom definitive conclusions have been reached. The present paper presents the use of CFD to document the importance of the interaction of in-line and cross-flow motions on VIV response. 2D numerical tests have been performed using NS3 (DHI-CFD code) for a model undergoing in-line, cross-flow, combined in-line and cross-flow, and cross-flow in combination with forced in-line motions. The paper compares the results with some recent model tests and quantifies the significance of interaction.


Author(s):  
Weiping Huang ◽  
Weihong Yu

In this paper, an experimental study on the in-line and cross-flow vortex-induced vibration (VIV) of flexible cylinders is conducted. The relationship of two-degree-of-freedoms of vortex-induced vibration of flexible cylinders is also investigated. The influence of natural frequency of flexible cylinders on vortex shedding and VIV are studied through the experiment in this paper. Finally, A nonlinear model, with fluid-structure interaction, of two-degree-of-freedom VIV of flexible cylinders is proposed. It is shown that the ratio of the frequencies and amplitudes of in-line and cross flow VIV of the flexible cylinders changes with current velocity and Reynolds number. The natural frequency of flexible cylinder has great influence on the vortex-induced virbation due to the strong fluid-structure coupling effect. Under given current velocity, the natural frequency of flexible cylinder determines its forms of vibration (in circular or ‘8’ form). The ratio of the VIV frequencies is 1.0 beyond the lock in district and 2.0 within the lock in district respectively. And the ratio of the VIV amplitudes is 1.0 beyond the lock in district and 1/3 to 2/3 within the lock in district. The results from this paper indicates that in-line vibration should be considerated when calculating the vibration response and fatigue damage.


Sign in / Sign up

Export Citation Format

Share Document