Study of Tire Model Consisting of Theoretical and Experimental Equations for Vehicle Dynamics Analysis - Part 1: Under the Condition of Constant Velocity

1993 ◽  
Author(s):  
Kazuo Araki ◽  
Hideo Sakai ◽  
Minao Yanase
2010 ◽  
Vol 38 (2) ◽  
pp. 155-180 ◽  
Author(s):  
Thomas Hüsemann ◽  
Mark Wöhrmann

Abstract Computer aided engineering tools play an important role in today’s vehicle development process. Today, overall vehicle dynamics analysis and chassis component fatigue resistance investigations can be carried out without the need for existing prototype hardware versions of the corresponding vehicle. An accurate tire model is a key element in precise modeling of the vehicle and its components. All forces acting on the vehicle (except for aerodynamic forces) are transferred via the tires. Therefore, the tire and its modeled characteristics have a major influence on the results of vehicle dynamics analysis. At present, many tire simulation models are available for application in vehicle dynamics analysis. To obtain the best possible performance from these models, a number of different tire measurements are required to support the tire model parameter identification process. This paper presents a review of different tire simulation models and their required tire measurements. Depending on the test rigs used and the measurement procedures applied, the tire measurement results may be somewhat different. What is the impact of these differences on the tire modeling performance and the vehicle dynamics analysis output? This paper gives an answer.


Author(s):  
Shahab Karimi ◽  
Ardalan Vahidi ◽  
Paramsothy Jayakumar

Vehicle dynamics analysis becomes more demanding for off-road vehicles’ mobility in unconstructed environments. Significant vehicle orientation changes, extreme changes in ground elevation, and uneven ground profiles at tire-road contact regions, etc. must be taken into account. In addition, the simulation computations should strike a balance between the speed and the accuracy of the results. In this paper, a model with fourteen degrees of freedom is used for vehicle dynamics analysis. Integrated within the model, a comprehensive tire model and a system of instantaneous rotation matrices are programmed to address the effect of more extreme ground profiles on the vehicle dynamics. Additionally, an iterative algorithm is developed to explore and determine the tire-road contact point. The results of simulation for two random scenarios are validated versus a commercial vehicle dynamics software showing consistency of results.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4309
Author(s):  
Wojciech Wach ◽  
Jakub Zębala

Tire yaw marks deposited on the road surface carry a lot of information of paramount importance for the analysis of vehicle accidents. They can be used: (a) in a macro-scale for establishing the vehicle’s positions and orientation as well as an estimation of the vehicle’s speed at the start of yawing; (b) in a micro-scale for inferring among others things the braking or acceleration status of the wheels from the topology of the striations forming the mark. A mathematical model of how the striations will appear has been developed. The model is universal, i.e., it applies to a tire moving along any trajectory with variable curvature, and it takes into account the forces and torques which are calculated by solving a system of non-linear equations of vehicle dynamics. It was validated in the program developed by the author, in which the vehicle is represented by a 36 degree of freedom multi-body system with the TMeasy tire model. The mark-creating model shows good compliance with experimental data. It gives a deep view of the nature of striated yaw marks’ formation and can be applied in any program for the simulation of vehicle dynamics with any level of simplification.


2005 ◽  
Vol 43 (sup1) ◽  
pp. 267-280 ◽  
Author(s):  
G. Gim ◽  
Y. Choi ◽  
S. Kim

Author(s):  
S. C¸ag˘lar Bas¸lamıs¸lı ◽  
Selim Solmaz

In this paper, a control oriented rational tire model is developed and incorporated in a two-track vehicle dynamics model for the prospective design of vehicle dynamics controllers. The tire model proposed in this paper is an enhancement over previous rational models which have taken into account only the peaking and saturation behavior disregarding all other force generation characteristics. Simulation results have been conducted to compare the dynamics of a vehicle model equipped with a Magic Formula tire model, a rational tire model available in the literature and the present rational tire model. It has been observed that the proposed tire model results in vehicle responses that closely follow those obtained with the Magic Formula even for extreme driving scenarios conducted on roads with low adhesion coefficient.


Author(s):  
V. Y. Stepanov

The article gives a classification of the main components of unmanned aerial vehicle (UAV) systems, gives the areas in which the application of UAVs is actual in practice today. Further, the UAV is considered in more detail from the point of view of its flight dynamics analysis, the equation necessary for creating a mathematical model, as well as the model of an ordinary dynamic system as a non-stationary nonlinear controlled object, is given. Next, a description of the developed software for modeling and a description of program algorithm are given. Finally, a conclusion describes the necessary directions for further scientific researches.


2013 ◽  
Vol 52 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Nong Zhang ◽  
Lifu Wang ◽  
Haiping Du

Sign in / Sign up

Export Citation Format

Share Document