Retainers, (Back-Up Rings), Hydraulic and Pneumatic, Polytetrafluoroethylene Resin, Solid, Un-Cut, for Use in Static Glands to AS5857

2020 ◽  
Author(s):  
Keyword(s):  
PERENNIAL ◽  
2006 ◽  
Vol 2 (1) ◽  
pp. 6 ◽  
Author(s):  
. Suhasman ◽  
Muh. Yusram Massijaya ◽  
Yusuf Sudo Hadi

The use of recycled carton as an alternative material for the layer of composite board may increase the board strength properties. The objective of this research was to find out the influence of face and back layer types on the quality of produced boards. Materials used in this study were wafer made from sengon wood (Paraserianthes falcataria L. Nielsen), water based polymer isocyanate adhesive, and several kinds of cartons such as duplex carton, recycled carton, and waste of corrugated board. The composite board was produced with the target density of 0.65 g/cm3 and the resin solid content of 6% based on oven dry weight of particle, face and back layers. The results are as follows : 1) Utilization of carton layers improved the dimensional stability and bending strength of board; 2) Composite board with recycled carton layer fullfilled the Japanese Industrial Standard (JIS) A-5908-1994 for wafer board type in terms of density, water content, and modulus of rupture (MOR) in lengthwise and widhtwise of board but, did not fullfill that for veneered particled board type; 3) The presence of those layer material types decreased internal bond of the board. Keywords : composite board, face and back layer types, recyled carton


2021 ◽  
Author(s):  
Juan Manuel Arroyave ◽  
Jose Luis Paredes ◽  
Fabian Ricardo Castro ◽  
Jhon Rubiano ◽  
Carlos Gandara ◽  
...  

Abstract Well Integrity is a critical compliance requirement during oil and gas operations. Abandonment procedures must ensure that all hydrocarbon sources are properly isolated and effective barriers are placed. This paper describes the use of resin systems to isolate annular gas migration identified during the Obiwan – 1 well abandonment in Colombia. The main challenge was to select and design fluid systems capable to fill tight spaces and isolate the annular channel. Resin systems are high-strength, elastic polymers which act as dependable barriers to isolate fluid flow. They can be designed as a solid-free, pure liquid or may contain solids (cement with a formulated percent of resin). Solid-free formulations are ideal for remedial operations, such as isolating annular gas. Acoustic logging enabled identification of the influx zones. Annular isolation was achieved by executing two cementing remedial operations using the bradenhead squeeze technique. A tailored resin system was selected to deliver the proper barrier addressing the influx zones after injectivity tests were performed in each interval. For the first intervention a solids-free resin system was used, and for the second one a resin-cement composite system was applied. During cementing remedial operations, it was determined that the resin systems were able to achieve deep penetration into the channels more readily and form a seal. The correct system was selected for each case, and during execution, the required volume was injected to intersect and properly isolate the annular gas channel. As a result, the tailored resin systems isolated the gas channel eliminating annular pressure and gas migration to surface. In addition, a post remedial operation acoustic log indicated that the influx zones were successfully isolated. Well abandonment was accomplished according to country regulatory requirements and delivered dependable barriers both annular and interior pipe sections. Use of resin to repair channels of this type exhibited a higher success rate and improved reliability in comparison to conventional particulate-laden fluids, which helps to decrease costs for additional remedial treatments.


2018 ◽  
Vol 264 ◽  
pp. 261-267 ◽  
Author(s):  
Tingwei Zhang ◽  
Wenzhi Li ◽  
Shengxin An ◽  
Feng Huang ◽  
Xinzhe Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document