Mechanical Behaviour of Al7075 Hybrid Composites Developed through Squeeze Casting

Author(s):  
V. Gopal ◽  
D. Marx Raghu Raja ◽  
Jaikumar Mayakrishnan ◽  
V. Hariram

The automotive and aerospace sector are behind the development of squeeze casting process, as the squeeze cast components exhibit improved mechanical properties. Squeeze casting is a hybrid metal processing technique that combines the advantage of both casting and forging in one operation. The aluminium alloy 7075 is a futuristic material that is widely used to produce automotive and aerospace components. Cylindrical component of AL 7075 was produced by varying the squeeze pressure at certain level. The specimen was made from the component as per ASTM standard and they were tested for mechanical properties such as tensile hardness and impact strength respectively. It was found that mechanical properties were enhanced with increase in squeeze pressure. The aluminium 7075 hybrid composites developed through squeeze casting is fabricated and experimented upon and found to have adequate potential for wide variety of application. In aerospace industries it can be used in gear components, blade sleeves, guide vanes, wing components etc. Applications in surface transport are brake rotors, automotive engine cylinder, engine exhaust valve, body chassis and connecting rods. This material can be used in light weight applications such as power lines and wind mill fans.

2014 ◽  
Vol 984-985 ◽  
pp. 350-354 ◽  
Author(s):  
M. Thirumal Azhagan ◽  
B. Mohan ◽  
A. Rajadurai ◽  
S. Maharajan

Squeeze casting is a hybrid metal processing technique that combines the advantages of both casting and forging in one operation. The automotive and aerospace sectors are behind the development of squeeze casting process as the squeeze cast components exhibit improved mechanical properties. The Aluminium alloy 6061 is a futuristic material that is widely used to produce automotive and aerospace components. In this attempt, cylindrical components of AA6061 were produced by varying the squeeze pressure at certain levels when the die preheat temperature and the pressure applied duration were maintained at constant levels. The specimens were made from the components as per ASTM standards and they were tested for mechanical properties such as impact strength and micro hardness respectively. It was found that the mechanical properties were enhanced with the increase in squeeze pressure.


2019 ◽  
Vol 1 (1) ◽  
pp. 38-48
Author(s):  
A. Sathishkumar ◽  
Gowtham A ◽  
M. Jeyasuriya ◽  
S. DineshBabu

Aluminum alloy is widely used in automotive, aerospace and other engineering industries because of its excellent mechanical properties. The main objective is to enhance 6061 Al alloy’s mechanical properties by producing 6061-B4C composite through squeeze casting process. Experimentation was carried out with different micron sizes and weight fraction of B4C particles. The mechanical properties of reinforced metal matrix were experimentally investigated in terms of Ultimate Tensile Strength and Hardness. We observe that these two properties are improved by the reinforcement of B4C particles and applied squeeze pressure.


2016 ◽  
Vol 879 ◽  
pp. 530-535
Author(s):  
Xiao Gang Fang ◽  
Shu Sen Wu ◽  
Shu Lin Lü

Mg-Zn-Y alloys containing a thermally stable icosahedral quasicrystal phase (I-phase) will have wide application future on condition that primary α-Mg dendrite and the I-phase can be refined during the casting process. In this research, the microstructure and mechanical properties of the rheo-squeeze casting (RSC) Mg-6Zn-1.4Y alloys have been investigated. The Mg alloy melt was exposed to ultrasonic vibration (USV) with different acoustic power densities from 0 W/mL to 9 W/mL, and then the slurry was formed by squeeze casting. The results show that good semi-solid slurry with fine and spherical α-Mg particles could be obtained with the acoustic power density of 6 W/mL, and the average grain size and shape factor of primary α-Mg were 32 μm and 0.76, respectively. Meanwhile the coarse eutectic I-phase (Mg3Zn6Y) was refined obviously and dispersed uniformly. Compared with the samples without USV, the tensile strength and elongation of the RSC casting samples with 6 W/mL acoustic power density were elevated by 10.6% and 55.5%, respectively.


2011 ◽  
Vol 306-307 ◽  
pp. 1464-1467
Author(s):  
Zhi Hong Guo ◽  
Hua Hou ◽  
Shu Wei Qu

A research program was simulated to study the effects of pouring temperature, squeeze pressure and die temperature on the tensile, elongation and hardness properties of AZ91D magnesium alloys using anycasting software. The curves with different processing parameters on mechanical properties have been painted. The results indicated that mechanical properties increased firstly, then decreased when the pouring temperature increased to 670°C, and gradually increased with the increasing of squeeze pressure. The affect laws of mould temperature are similar as ones of pouring temperature. Eventually found that the squeeze casting got better mechanical properties(σb= 225MPa, δ= 3.6%, Vickers hardness=62) on the pouring temperature 670°C, mold temperature 180°C, holding pressure 120Mpa, pressure duration 25s.


The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5278
Author(s):  
Yi Guo ◽  
Yongfei Wang ◽  
Shengdun Zhao

Scroll compressors are popularly applied in air-conditioning systems. The conventional fabrication process causes gas and shrinkage porosity in the scroll. In this paper, the electromagnetic stirring (EMS)-based semisolid multicavity squeeze casting (SMSC) process is proposed for effectively manufacturing wrought aluminum alloy scrolls. Insulation temperature, squeeze pressure, and the treatment of the micromorphology and mechanical properties of the scroll were investigated experimentally. It was found that reducing the insulation temperature can decrease the grain size, increase the shape factor, and improve mechanical properties. The minimum grain size was found as 111 ± 3 μm at the insulation temperature of 595 °C. The maximum tensile strength, yield strength, and hardness were observed as 386 ± 8 MPa, 228 ± 5 MPa, and 117 ± 5 HV, respectively, at the squeeze pressure of 100 MPa. The tensile strength and hardness of the scroll could be improved, and the elongation was reduced by the T6 heat treatment. The optimal process parameters are recommended at an insulation temperature in the range of 595–600 °C and a squeeze pressure of 100 MPa. Under the optimal process parameters, scroll casting was completely filled, and there was no obvious shrinkage defect observed inside. Its microstructure is composed of fine and spherical grains.


Author(s):  
Mohan Bangaru ◽  
Thirumal Azhagan Murugan ◽  
Rajadurai Arunachalam

In the recent days, aerospace, automotive and defense sectors have been the main driving force behind the search of lighter and stronger materials in order to use in the production of vehicles. The growing demand for the production of light weight structural components and systems is fulfilled by the development of innovative metallic materials such as composites and alloys particularly based on aluminium because of their desirable properties such as low density, good castability, excellent strength and excellent corrosion resistance. Widely employed processes such as gravity and pressure die casting are used for processing aluminium alloys but the components exhibit several casting defects such as porosity, cracks, segregation and hot tears etc. This drives the industries to develop new processes which produce defect free components in shorter time as they have been under competitive pressure. Of the many such processes, squeeze casting has good capacity to produce less defective components. Squeeze casting is the process in which the molten metal solidifies under the application of pressure. The development of Aluminium Matrix Composites (AMCs) through squeeze casting has been one of the major areas of research in recent times. Research works on AMCs reinforced with micrometric particles have shown that the ability to strengthen the matrix alloy by them is lesser than nanometric particles. Metal matrices reinforced with nanoparticles are characterized by significant improvement in strength and wear resistance, improved ductility and improved dimensional stability at elevated temperatures. But, nanosized ceramic particles constitute problems during fabrication as it is extremely difficult to obtain uniform dispersion of nanoparticles in liquid metals owing to their high viscosity, poor wettability in the metal matrix, and a large surface-to-volume ratio. These problems induce agglomeration and clustering of nanoparticles. The nanoparticles can be dispersed uniformly in the metal matrix by means of employing ultrasonic cavitations. Ultrasonic cavitations include the formation, growth and collapse of micro-bubbles in liquids, under cyclic high intensity ultrasonic waves. The cavitation bubbles collapse and generate a huge amount of energy, which could be used in dispersion of the nanoparticles more uniformly in the melt. In this study, squeeze casting is combined with ultrasonic cavitations to develop Metal Matrix Nanocomposites (MMNCs) of AA6061 – SiCp as a maiden attempt. The impact of varying volume percentage of SiCp nanoparticles (average size of 45 nm – 65 nm) by ultrasonic cavitations on mechanical properties such as ultimate tensile strength and hardness exhibited by MMNCs were analyzed. In this research, volume percentage of SiCp nanoparticles was varied at 0.4%, 0.8% and 1.2% respectively by employing ultrasonic vibrations at the amplitude of 70 μm to the melt of AA6061. The melt of AA6061-SiCp was poured into the pre heated die cavity and squeeze pressure of 105 Mpa was applied over it for a certain period while developing MMNCs. Scanning Electron Microscope (SEM) images showed the uniform distribution of SiCp nanoparticles in AA6061 matrix. Energy Dispersive Spectroscopy (EDS) in SEM confirmed the incorporation of SiCp in AA6061 matrix. The obtained results confirmed the effectiveness of ultrasonic cavitations in squeeze casting process to disperse the nanoparticles of SiCp uniformly in AA6061 matrix. The mechanical properties of MMNCs such as ultimate tensile strength and hardness exhibited an increasing trend with respect to the increase in volume percentage of SiCp nanoparticles. Thus there prevails a great scope to develop MMNCs of aluminium using ultrasonic cavitations in squeeze casting process.


2018 ◽  
Vol 941 ◽  
pp. 1607-1612 ◽  
Author(s):  
Shu Lin Lü ◽  
Xiong Yang ◽  
Liang Yan Hao ◽  
Shu Sen Wu

In this work, ultrasonic rheocasting was used to refine the microstructures of Mg alloys reinforced with long period stacking ordered (LPSO) phase. The semisolid slurries of Mg-Zn-Y and Mg-Ni-Y alloys were prepared by ultrasonic vibration (UV) and then formed by rheo-squeeze casting under high squeeze pressure (~ 400 MPa). The effects of UV and squeeze pressure on microstructure and mechanical properties of the Mg alloys were studied. The results reveal that UV and rheo-squeeze casting can significantly refine the LPSO structure and alpha-Mg matrix in Mg alloys, but they cannot change the phase compositions of the alloys or the type of LPSO phase. When the squeeze pressure is 400 MPa, the average thickness of LPSO phase is decreased, and the block LPSO structure is completed eliminated and uniformly distributed at the grain boundaries. Compared with the gravity cast alloys without UV, mechanical properties of the rheocast Mg alloys were enhanced and reached the maximums when the squeeze pressure was 400 MPa.


Sign in / Sign up

Export Citation Format

Share Document