Vibration Isolation of Railway Vehicle Car body using Semi-active Suspension

Author(s):  
Rakesh Chandmal Sharma ◽  
Srihari Palli ◽  
M. Avesh ◽  
Neeraj Sharma

In the past, the magnetorheological (MR) suspension for railway vehicle has obtained great attention for the isolation of vibrations. This work presents a numerical approach to analyse skyhook and ground hook semi-active control methods for railway vehicle suspension. A 10 DoF model of the railway vehicle system is formulated for the comparative analysis between conventional passive and semi-active suspension control in the present study. The non-linear analysis is investigated in time and frequency domain for the sinusoidal excitations from the track.

Volume 1 ◽  
2004 ◽  
Author(s):  
Zhiqiang Gu ◽  
S. Olutunde Oyadiji

Traditionally automotive suspension designs have been a compromise between the three conflicting criteria of road holding, load-carrying and passenger comfort. Active and semiactive suspension control methods have been considered as ways of increasing the freedom one has to specify independently the characteristics of load carrying, handling and ride quality. Consequently, these control methods have been enthusiastically investigated in the past decades. In this paper, active suspension control based on LMIs, including H∞ control and mixed H2/H∞ synthesis has been developed in this paper. The simulation results demonstrate that robust control method can suppress disturbance from road inputs, thus improving the ride comfort and maintaining the good road handling. The mixed H2/H∞ synthesis can provide both the robustness of H∞ control and the better performance of H2 (LQR) method.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5560
Author(s):  
Jarosław Konieczny ◽  
Marek Sibielak ◽  
Waldemar Rączka

In the paper authors consider the active suspension of the wheeled vehicle. The proposed controller consists of a sliding mode controller used to roll reduction and linear regulators with quadratic performance index (LQRs) for struts control was shown. The energy consumption optimization was taken into account at the stage of strut controllers synthesis. The studied system is half of the active vehicle suspension using hydraulic actuators to increase the ride comfort and keeping safety. Instead of installing additional actuators in the form of active anti-roll bars, it has been decided to expand the active suspension control algorithm by adding extra functionality that accounts for the roll. The suggested algorithm synthesis method is based on the object decomposition into two subsystems whose controllers can be synthesized separately. Individual suspension struts are controlled by actuators that use the controllers whose parameters have been calculated with the LQR method. The mathematical model of the actuator applied in the work takes into account its nonlinear nature and the dynamics of the servovalve. The simulation tests of the built active suspension control system have been performed. In the proposed solution, the vertical displacements caused by uneven road surface are reduced by controllers related directly to suspension strut actuators.


Author(s):  
S. Gosselin-Brisson ◽  
M. Bouazara ◽  
M. J. Richard

This paper presents the design of an active suspension controller for an automotive vehicle. A four degrees of freedom linear model is used to represent a vehicle with different front and rear characteristics. Filtered road and acceleration inputs are applied to the model to simulate real life use. The performance criterion are filtered to include frequency sensitivity and weighted based on a standard passive suspension system. Independent front and rear controllers are optimised with the genetic algorithm. The controller includes linear gains and frequency dependency to take advantage of these two different control methods. The number of sensors and the order of the filters are limited to facilitate implementation on a real vehicle.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012014
Author(s):  
M H Ab Talib ◽  
I Z Mat Darus ◽  
H M Yatim ◽  
M S Hadi ◽  
N M R Shaharuddin ◽  
...  

Abstract The semi-active suspension (SAS) system is a partial suspension device used in the vehicle system to improve the ride comfort and road handling. Due to the high non-linearity of the road profile disturbances plus uncertainties derived from vehicle dynamics, a conventional Skyhook controller is not deemed enough for the vehicle system to improve the performance. A major problem of the implementation of the controller is to optimize a proper parameter as this is an important element in demanding a good controller response. An advanced Firefly Algorithm (AFA) integrated with the modified skyhook (MSky) is proposed to enhance the robustness of the system and thus able to improve the vehicle ride comfort. In this paper, the controller scheme to be known as MSky-AFA was validated via MATLAB simulation environment. A different optimizer based on the original firefly algorithm (FA) is also studied in order to compute the parameter of the MSky controller. This control scheme to be known as MSky-FA was evaluated and compared to the proposed MSky-AFA as well as the passive suspension control. The results clearly exhibit more superior and better response of the MSky-AFA in reducing the body acceleration and displacement amplitude in comparison to the MSky-FA and passive counterparts for a sinusoidal road profile condition.


2011 ◽  
Vol 44 (1) ◽  
pp. 1802-1807 ◽  
Author(s):  
C. Poussot-Vassal ◽  
C. Spelta ◽  
O. Sename ◽  
S.M. Savaresi ◽  
L. Dugard

2012 ◽  
Author(s):  
Arfah Syahida Mohd Nor ◽  
Hazlina Selamat ◽  
Ahmad Jais Alimin

This paper presents the design of an active suspension control of a two–axle railway vehicle using an optimized linear quadratic regulator. The control objective is to minimize the lateral displacement and yaw angle of the wheelsets when the vehicle travels on straight and curved tracks with lateral irregularities. In choosing the optimum weighting matrices for the LQR, the Particle Swarm Optimization (PSO) method has been applied and the results of the controller performance with weighting matrices chosen using this method is compared with the commonly used, trial and error method. The performance of the passive and active suspension has also been compared. The results show that the active suspension system performs better than the passive suspension system. For the active suspension, the LQR employing the PSO method in choosing the weighting matrices provides a better control performance and a more systematic approach compared to the trial and error method. Key words: active suspension control, two–axle railway vehicle, linear quadratic regulator, particle swarm optimization


2014 ◽  
Vol 602-605 ◽  
pp. 1372-1377 ◽  
Author(s):  
Yi Zhang ◽  
Li Li Sun

In order to improve the control effect of vehicle suspension, the simplified Seven-DOF active suspension model was created in ADAMS/View by applying the dynamics theory, and classical PID control principle was utilized to design an active suspension controller for vehicle. The vehicle model was imported into the PID controller established in MATLAB as a module to create a vehicle active suspension control model. According to the simulation results, compared with passive suspension, the PID control of active suspension can control effectively the vertical vibration acceleration (VVA),roll and pitch acceleration (RAA&PAA) of body ,which improved vehicle ride comfort performance.


Sign in / Sign up

Export Citation Format

Share Document