scholarly journals Optimization of THz diffractive optical elements thickness

2018 ◽  
Vol 10 (4) ◽  
pp. 115 ◽  
Author(s):  
Mateusz Surma ◽  
Izabela Ducin ◽  
Maciej Sypek ◽  
Przemyslaw Zagrajek ◽  
Agnieszka Siemion

Diffractive optical elements (DOEs) are strictly related to the design wavelength due to the fact that they must introduce particular phase delay of the wavefront propagating through the structure. Mostly the attenuation of the material is not taken into account. In this article we propose to optimize thickness of the DOE by reducing introduced phase retardation but also attenuation. The efficiency of DOEs is determined by the method of coding phase distribution and can be easily measured by using diffraction orders of corresponding diffraction grating. Here, we analyze binary phase diffraction gratings with assumed attenuation. Full Text: PDF ReferencesJ.-L. Coutaz, Optoélectronique térahertz (Les Ulis CEDEX A, France, EDP Sciences 2012). DirectLink D. Headland, Y. Monnai, D. Abbott, C. Fumeaux,and W. Withayachumnankul, "Tutorial: Terahertz beamforming, from concepts to realizations", APL Photonics 3, 5 (2018). CrossRef S. F. Busch, M. Weidenbach, M. Frey, F. Schäfer, T. Probst, nd M. Koch, "A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization", Journal of Infrared, Millimeter, and Terahertz Waves 35, 12 (2014) CrossRef A. Siemion, P. Kostrowiecki-Lopata, A. Pindur, P. Zagrajek, M. Sypek, "Paper on Designing Costless THz Paper Optics", Advances in Materials Science and Engineering 2016, 9615698 (2016). CrossRef A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwinski, F. Garet, J.-L. Coutaz, and M. Sypek, "Diffractive paper lens for terahertz optics", Opt. Lett. 37, 4320–4322 (2012). CrossRef J.-L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, "Grating Diffraction Effects in the THz Domain", Acta Phys. Pol. A 107, 26-37 (2005). CrossRef M. S. Heimbeck, P. J. Reardon, J. Callahan, and H. O. Everitt, "Transmissive quasi-optical Ronchi phase grating for terahertz frequencies", Opt. Lett. 35, 21 (2010). CrossRef D. Li, S. Shu, F. Li, G. Ma, Y. Dai, and H. Ma, "Anomalous transmission of terahertz wave through one-dimensional lamellar metallic grating", Opt. Commun. 284, 10-11 (2011). CrossRef X. Li, and S. F. Yu, "Diffraction Characteristics of Concentric Circular Metal Grating Operating at Terahertz Regime", IEEE Journal of Quantum Electronics 46, 6 (2010). CrossRef B. Nöhammer, C. David, J. Gobrecht, and H. P. Herzig, "Optimized staircase profiles for diffractive optical devices made from absorbing materials", Opt. Lett. 28(13), 1087-1089 (2003). CrossRef V. Deuter, M. Grochowicz, S. Brose, J. Biller, S. Danylyuk, T. Taubner, D. Grutzmacher, and L. Juschkin, "Holographic masks for computational proximity lithography with EUV radiation", International Conference on Extreme Ultraviolet Lithography 2018 10809, 108091A (2018). CrossRef J. W. Goodman, Introduction to Fourier optics (Greenwood Village, USA, Roberts & Company Publishers 2005). DirectLink W. B. Veldkamp, "Optimized staircase profiles for diffractive optical devices made from absorbing materials", Appl. Opt. 21(17), 3209-3212W (1982). CrossRef W. B. Veldkamp, and C. J. Kastner, "Beam profile shaping for laser radars that use detector arrays", Appl. Opt. 21(2), 345-356 (1982). CrossRef https://www.mcortechnologies.com/de/3d-drucker/mcor-iris/ DirectLinkM. Sypek, M. Makowski, E. Hérault, A. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, "Highly efficient broadband double-sided Fresnel lens for THz range", Opt. Lett. 37, 12 (2012). CrossRef

2021 ◽  
Vol 11 (14) ◽  
pp. 6246
Author(s):  
Paweł Komorowski ◽  
Patrycja Czerwińska ◽  
Mateusz Kaluza ◽  
Mateusz Surma ◽  
Przemysław Zagrajek ◽  
...  

Recently, one of the most commonly discussed applications of terahertz radiation is wireless telecommunication. It is believed that the future 6G systems will utilize this frequency range. Although the exact technology of future telecommunication systems is not yet known, it is certain that methods for increasing their bandwidth should be investigated in advance. In this paper, we present the diffractive optical elements for the frequency division multiplexing of terahertz waves. The structures have been designed as a combination of a binary phase grating and a converging diffractive lens. The grating allows for differentiating the frequencies, while the lens assures separation and focusing at the finite distance. Designed structures have been manufactured from polyamide PA12 using the SLS 3D printer and verified experimentally. Simulations and experimental results are shown for different focal lengths. Moreover, parallel data transmission is shown for two channels of different carrier frequencies propagating in the same optical path. The designed structure allowed for detecting both signals independently without observable crosstalk. The proposed diffractive elements can work in a wide range of terahertz and sub-terahertz frequencies, depending on the design assumptions. Therefore, they can be considered as an appealing solution, regardless of the band finally used by the future telecommunication systems.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Hui Xiong ◽  
Liaoxin Sun

Abstract In this work, we present the design method of diffractive beam splitters via two comparative technical routes, the first referred as the direct scheme and the second referred as the indirect scheme. Comparative study is carried on the design procedures and results. The advantages of the direct design scheme include overcoming the limit on the number of phase pixels and being capable of realizing beam shaping and splitting simultaneously. Numerical simulation shows that the uniformity of spots array pattern in the direct design is close to that of the indirect design. These results are helpful for the design and application of diffractive optical elements (DOEs) in modern optical devices.


2002 ◽  
Vol 41 (35) ◽  
pp. 7384 ◽  
Author(s):  
Chang Chang ◽  
Patrick Naulleau ◽  
Erik Anderson ◽  
Kristine Rosfjord ◽  
David Attwood

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ming-Yen Lin ◽  
Chih-Hao Chuang ◽  
Tzu-An Chou ◽  
Chien-Yu Chen

AbstractNear 100% of diffractive efficiency for diffractive optical elements (DOEs) is one of the most required optical performances in broadband imaging applications. Of all flat DOEs, none seems to interest researchers as much as Two-Materials Composed Diffractive Fresnel Lens (TM-DFL) among the most promising flat DOEs. An approach of the near 100% of diffractive efficiency for TM-DFL once developed to determine the design rules mainly takes the advantage of numerical computation by methods of mapping and fitting. Despite a curved line of near 100% of diffractive efficiency can be generated in the Abbe and partial dispersion diagram, it is not able to analytically elaborate the relationship between two optical materials that compose the TM-DFL. Here, we present a theoretical framework, based on the fundaments of Cauchy's equation, Abbe number, partial dispersion, and the diffraction theory of Fresnel lens, for obtaining a general design formalism, so to perform the perfect material matching between two different optical materials for achieving the near 100% of diffractive efficiency for TM-DFL in the broadband imaging applications.


2021 ◽  
Vol 13 (4) ◽  
pp. 88
Author(s):  
Mateusz Surma ◽  
Mateusz Kaluza ◽  
Patrycja Czerwińska ◽  
Paweł Komorowski ◽  
Agnieszka Siemion

Terahertz (THz) optics often encounters the problem of small f number values (elements have relatively small diameters comparing to focal lengths). The need to redirect the THz beam out of the optical axis or form particular intensity distributions resulted in the application of iterative holographic methods to design THz diffractive elements. Elements working on-axis do not encounter significant improvement while using iterative holographic methods, however, for more complicated distributions the difference becomes meaningful. Here, we propose a totally different approach to design THz holograms, utilizing a neural network based algorithm, suitable also for complicated distributions. Full Text: PDF ReferencesY. Tao, A. Fitzgerald and V. Wallace, "Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology", Sensors, 20(3), 712 (2020). CrossRef J. O'Hara, S. Ekin, W. Choi and I. Song, "A Perspective on Terahertz Next-Generation Wireless Communications", Technologies, 7(2), 43 (2019). CrossRef L. Yu et al., "The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges", RSC Advances, 9(17), 9354 (2019). CrossRef A. Siemion, "The Magic of Optics—An Overview of Recent Advanced Terahertz Diffractive Optical Elements", Sensors, 21(1), 100 (2020). CrossRef A. Siemion, "Terahertz Diffractive Optics—Smart Control over Radiation", J. Infrared Millim. Terahertz Waves, 40(5), 477 (2019). CrossRef M. Surma, I. Ducin, P. Zagrajek and A. Siemion, "Sub-Terahertz Computer Generated Hologram with Two Image Planes", Appl. Sci., 9(4), 659 (2019). CrossRef S. Banerji and B.Sensale-Rodriguez, "A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements", Sci. Rep., 9(1), 5801 (2019). CrossRef J. Sun and F. Hu, "Three-dimensional printing technologies for terahertz applications: A review", Int. J. RF. Microw. C. E., 30(1) (2020). CrossRef E. Castro-Camus, M. Koch and A. I. Hernandez-Serrano, "Additive manufacture of photonic components for the terahertz band", J. Appl. Phys., 127(21), 210901 (2020). CrossRef https://community.wolfram.com/groups/-/m/t/2028026?p_%20479%20p_auth=blBtLb5d DirectLink P. Komorowski, et al., "Three-focal-spot terahertz diffractive optical element-iterative design and neural network approach", Opt. Express, 29(7), 11243-11253 (2021) CrossRef M. Sypek, "Light propagation in the Fresnel region. New numerical approach", Opt. Commun., 116(1-3), 43 (1995). CrossRef


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Goncharsky ◽  
Anton Goncharsky ◽  
Dmitry Melnik ◽  
Svyatoslav Durlevich

AbstractThis paper focuses on the development of flat diffractive optical elements (DOEs) for protecting banknotes, documents, plastic cards, and securities against counterfeiting. A DOE is a flat diffractive element whose microrelief, when illuminated by white light, forms a visual image consisting of several symbols (digits or letters), which move across the optical element when tilted. The images formed by these elements are asymmetric with respect to the zero order. To form these images, the microrelief of a DOE must itself be asymmetric. The microrelief has a depth of ~ 0.3 microns and is shaped with an accuracy of ~ 10–15 nm using electron-beam lithography. The DOEs developed in this work are securely protected against counterfeiting and can be replicated hundreds of millions of times using standard equipment meant for the mass production of relief holograms.


Author(s):  
Peter Zolliker ◽  
Elena Mavrona ◽  
Erwin Hack ◽  
Markus Ruggeberg ◽  
Zhihui Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document