scholarly journals Stop Voicing and F0 Perturbation in Pahari

2021 ◽  
Vol 11 (1) ◽  
pp. 113-128
Author(s):  
Nazia Rashid ◽  
Abdul Qadir Khan ◽  
Ayesha Sohail ◽  
Bilal Ahmed Abbasi

The present study has been carried out to investigate the perturbation effect of the voicing of initial stops on the fundamental frequency (F0) of the following vowels in Pahari. Results show that F0 values are significantly higher following voiceless unaspirated stops than voiced stops. F0 contours indicate an initially falling pattern for vowel [a:] after voiced and voiceless unaspirated stops. A rising pattern after voiced stops and a falling pattern after voiceless unaspirated stops is observed after [i:] and [u:]. These results match Umeda (1981) who found that F0 of a vowel following voiceless stops starts high and drops sharply, but when the vowel follows a voiced stop, F0 starts at a relatively low frequency followed by a gradual rise. The present data show no statistically significant difference between the F0 values of vowels with different places of articulation. Place of articulation is thus the least influencing factor.

2009 ◽  
Vol 39 (3) ◽  
pp. 335-364 ◽  
Author(s):  
Mahmood Bijankhan ◽  
Mandana Nourbakhsh

The purpose of this study is to examine voice onset time as a phonetic correlate of voicing distinction in standard Persian. Issues pertinent to VOT are also addressed: namely, the effect of place of articulation, vowel context and sex of speakers. The VOTs were measured from recordings of five male and five female speakers reading 65 words that contained a full set of Persian oral stops in word initial and intervocalic positions. This acoustic experiment indicated that VOT distinguishes voiced from voiceless stops. The results also revealed that Persian uses mainly {voiceless unaspirated} and {voiceless aspirated} categories for [±voice] distinction in initial position and {voiced} and {voiceless aspirated} categories in intervocalic position. Vowel context also affected VOT values but the only significant difference was due to high vowels, which caused the preceding voiceless stop to have a longer VOT. Examining sex differences in the VOT values indicated that for voiced items females produced longer VOTs than males. However, voiceless items displayed no significant sex differences for VOT values. Fundamental frequency (F0) of the onset of the following vowel was also examined as another cue to voice distinction. Although the F0 values of voiceless tokens were higher than those of the voiced ones in each voiced–voiceless category, the results suggest that F0 is not a major cue distinguishing the two stop categories.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Persona Paolo ◽  
Valeri Ilaria ◽  
Zarantonello Francesco ◽  
Forin Edoardo ◽  
Sella Nicolò ◽  
...  

Abstract Background During COVID-19 pandemic, optimization of the diagnostic resources is essential. Lung Ultrasound (LUS) is a rapid, easy-to-perform, low cost tool which allows bedside investigation of patients with COVID-19 pneumonia. We aimed to investigate the typical ultrasound patterns of COVID-19 pneumonia and their evolution at different stages of the disease. Methods We performed LUS in twenty-eight consecutive COVID-19 patients at both admission to and discharge from one of the Padua University Hospital Intensive Care Units (ICU). LUS was performed using a low frequency probe on six different areas per each hemithorax. A specific pattern for each area was assigned, depending on the prevalence of A-lines (A), non-coalescent B-lines (B1), coalescent B-lines (B2), consolidations (C). A LUS score (LUSS) was calculated after assigning to each area a defined pattern. Results Out of 28 patients, 18 survived, were stabilized and then referred to other units. The prevalence of C pattern was 58.9% on admission and 61.3% at discharge. Type B2 (19.3%) and B1 (6.5%) patterns were found in 25.8% of the videos recorded on admission and 27.1% (17.3% B2; 9.8% B1) on discharge. The A pattern was prevalent in the anterosuperior regions and was present in 15.2% of videos on admission and 11.6% at discharge. The median LUSS on admission was 27.5 [21–32.25], while on discharge was 31 [17.5–32.75] and 30.5 [27–32.75] in respectively survived and non-survived patients. On admission the median LUSS was equally distributed on the right hemithorax (13; 10.75–16) and the left hemithorax (15; 10.75–17). Conclusions LUS collected in COVID-19 patients with acute respiratory failure at ICU admission and discharge appears to be characterized by predominantly lateral and posterior non-translobar C pattern and B2 pattern. The calculated LUSS remained elevated at discharge without significant difference from admission in both groups of survived and non-survived patients.


Author(s):  
Vinayaravi R ◽  
Jayaraj Kochupillai ◽  
Kumaresan D ◽  
Asraff A. K

Abstract The objective of this paper is to investigate how higher damping is achieved by energy dissipation as high-frequency vibration due to the addition of impact mass. In an impact damper system, collision between primary and impact masses cause an exchange of momentum resulting in dissipation of energy. A numerical model is developed to study the dynamic behaviour of an impact damper system using a MDOF system with Augmented Lagrangian Multiplier contact algorithm. Mathematical modelling and numerical simulations are carried out using ANSYS FEA package. Studies are carried out for various mass ratios subjecting the system to low-frequency high amplitude excitation. Time responses obtained from numerical simulations at fundamental mode when the system is excited in the vicinity of its fundamental frequency are validated by comparing with experimental results. Magnification factor evaluated from numerical simulation results is comparable with those obtained from experimental data. The transient response obtained from numerical simulations is used to study the behaviour of first three modes of the system excited in vicinity of its fundamental frequency. It is inferred that dissipation of energy is a main reason for achieving higher damping for an impact damper system in addition to being transformed to heat, sound, and/or those required to deform a body.


2012 ◽  
Vol 49 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Jorge Fonseca ◽  
José Martins-dos-Santos ◽  
Pedro Oliveira ◽  
Nuno Laranjeira ◽  
Artur Aguas ◽  
...  

CONTEXT: Only a few studies evaluated the digestive alterations caused by low frequency noise (LFN) and most focused only on mucosal alterations. OBJECTIVES: To investigate the morphological injury of LFN-exposed gastric wall, beyond the epithelial layer. METHODS: Wistar rats were exposed to low frequency noise (LFN), during increasing periods, 1 to 13 weeks. A control group was kept in silence. Gastric specimens were studied using: (i) light microscopy with hematoxylin-eosin and immunostaining for collagens; (ii) transmission electron microscopy; (iii) morphometry allowing statistical analysis. RESULTS: Submucosa of all LFN-exposed animals exhibit increased thickness with fibrous proliferation. Transmission electron microscopy showed massive collagen deposition. Immunostaining identified collagen IV as responsible for the increased thickness. Morphometry allowed the demonstration of a significant difference of thickness between control and exposed groups. Vascular alterations included: i) intima proliferation and thickening, rupture of the internal elastic lamina, thrombotic changes; ii) thickening of the media; iii) after 9 weeks of LFN-exposure, we found new formed vessel presenting tortuous and twisted. There is a significant difference of arterial wall thickness between control and exposed groups. CONCLUSIONS: Deeper layers of gastric wall undergo alterations, including fibrosis of the submucosa caused by collagen IV deposition, an early marker of neoangiogenesis. Vascular alterations included thickening and thrombotic phenomena, but also images of newly formed vessels. This study suggests that, at least in the stomach, LFN-induced fibrosis could be linked with neoangiogenesis.


2019 ◽  
Author(s):  
JM García-Lobo ◽  
Y Ortiz ◽  
C González-Riancho ◽  
A Seoane ◽  
B Arellano-Reynoso ◽  
...  

AbstractSome Brucella isolates are known to require an increased concentration of CO2 for growth, especially in the case of primary cultures obtained directly from infected animals. Moreover, the different Brucella species and biovars show a characteristic pattern of CO2 requirement, and this trait has been included among the routine typing tests used for species and biovar differentiation. By comparing the differences in gene content among different CO2-dependent and CO2-independent Brucella strains we have confirmed that carbonic anhydrase II (CA II), is the enzyme responsible for this phenotype in all the Brucella strains tested. Brucella species contain two carbonic anhydrases of the β family, CA I and CA II; genetic polymorphisms exist for both of them in different isolates, but only those putatively affecting the activity of CA II correlate with the CO2 requirement of the corresponding isolate. Analysis of these polymorphisms does not allow the determination of CA I functionality, while the polymorphisms in CA II consist of small deletions that cause a frameshift that changes the C-terminus of the protein, probably affecting its dimerization status, essential for the activity.CO2-independent mutants arise easily in vitro, although with a low frequency ranging from 10−6 to 10−10 depending on the strain. These mutants carry compensatory mutations that produce a full length CA II. At the same time, no change was observed in the sequence coding for CA I. A competitive index assay designed to evaluate the fitness of a CO2-dependent strain compared to its corresponding CO2-independent strain revealed that while there is no significant difference when the bacteria are grown in culture plates, growth in vivo in a mouse model of infection provides a significant advantage to the CO2-dependent strain. This could explain why some Brucella isolates are CO2-dependent in primary isolation. The polymorphism described here also allows the in silico determination of the CO2 requirement status of any Brucella strain.


Author(s):  
Vladimir Karpinsky ◽  
Vladimir Asming

The infrasound array VALS developed in Kola Branch GS RAS has been installed in June 2016 on the Valaam Island in addition to the continuously operating seismic station VALR. The array consists of 3 spaced low-frequency microphones. The data with a sampling rate of 100 Hz is stored continuously at the acquisition computer; the timing is carried out using GPS. In addition to the acquisition system, an infrasound signal detector is installed on the computer. It works in near real-time mode and enables us to find signals and compute their back azimuths. At the end of 2018, a new version of the detector was developed at the Kola Branch GS RAS. The detector began to work much faster, which enabled us to carry out data processing for 2.5 years in two frequency ranges in a short time. The main task of the array is acoustic monitoring, the detection of infrasound events, the determination of their parameters, and the selection of events of natural origin. The data are also used (in combination with the VALR seismic station data) to locate near seismic events, especially weak ones. The analysis of the obtained data revealed the prevailing directions to the signal sources. The change of directions to sources in time was investigated, seasonal features were revealed. Acoustic events were detected in the frequency bands 1–5 Hz and 10–20 Hz, and a significant difference was found in the azimuthal distribution of events for these ranges. A joint analysis of acoustic and seismic data showed that the part of events with both acoustic and seismic components is low – it is almost completely exhausted by career explosions. It was also noted that in addition to explosions in nearby quarries (Kuznechnoye, Pitkäranta) located at a distance of 50–60 km, according to acoustic data, events corresponding to explosions at quarries located at a distance of 100 km or more were repeatedly identified.


2020 ◽  
Vol 7 (3) ◽  
pp. 127-131
Author(s):  
Farzad Ashrafi ◽  
Amir Rezaei ◽  
Arash Azhideh ◽  
Faraj Tabeie ◽  
Latif Gachkar ◽  
...  

Introduction: Stroke is one of the most devastating neurologic conditions in the world. Despite all the efforts that have been made for effective treatment, the prevalence of this medical condition is still high. One of the new methods in the treatment of patients is the use of low power laser and pulsed magnetic fields. The previous studies investigated the effectiveness of these methods individually. However, the present study aimed to investigate their effectiveness in combination. Methods: We divided the patients into control (n=26) and experimental (n=26) groups. The primary variables included the Mini-Mental State Examination (MMSE) and the National Institute of Health Stroke Scale (NIHSS). The experimental group received extremely low-frequency electromagnetic field (EMF-ELF) treatment with 1 mT power and laser in rejection with a wavelength of 840 nm for 5 days and 45 min/d. Results: The variable measured during this study, in addition to comparing the results of the intervention between the control and experimental groups, showed a significant difference in all indicators before and after the intervention. The mean and standard deviations of the modified Rankin scale (mRS), functional status (Barthel’s index), and cognitive status (MMSE) (P<0.001) were signed between 2 groups. Conclusion: Laser and magnetic field combination can be effective in the treatment of stroke. Further studies are recommended to ensure a better comparison.


Author(s):  
Yong-Soon Yoon ◽  
Myoung-Hwan Ko ◽  
Il-Young Cho ◽  
Cheol-Su Kim ◽  
Johny Bajgai ◽  
...  

Electrotherapy is commonly used for myalgia alleviation. Low-frequency stimulation (LFS) is primarily used for controlling acute and chronic pain and is a non-invasive therapy that can be easily performed with electric stimulation applied on the skin. However, little evidence exists regarding the pain alleviation effects of personal low-frequency stimulation device for home use. Moreover, no studies have compared myalgia alleviation effects between personal low-frequency stimulation (PLS) and physical therapy (PT), which are most commonly used for patients with myalgia in hospitals and clinics. Therefore, we aimed to investigate the pain alleviation effects of PLS in patients with myalgia and compare these effects with those of conventional PT (transcutaneous electrical nerve stimulation + ultrasound). In total, 39 patients with myalgia in the neck, shoulder, back, and waist areas were randomly assigned to the personal low-frequency stimulation group (PLSG: n = 20) and physical therapy group (PTG: n = 19). Both groups were treated for 3 weeks (20 min per session and 5 sessions per week). Patients were assessed for pain intensity by surface electromyography (sEMG), visual analogue scale (VAS) and a short-form McGill pain questionnaire (SF-MPQ) before and after the intervention period. Our results showed that PLSG showed a tendency of muscle relaxation with a significant decrease in sEMG in the neck (p = 0.0425), shoulder (p = 0.0425), and back (p = 0.0046) areas compared to the control group. However, there was no significant difference in waist area. Additionally, VAS scores significantly decreased between pre- and post-treatment in both PTG (p = 0.0098), and PLSG (p = 0.0304) groups, but there was no significance difference between the groups. With respect to SF-MPQ, the PLSG showed greater pain alleviation (5.23 ± 0.25) effects than the PTG (6.23 ± 0.25). Accordingly, our results suggest that PLS treatment using a home device might offer positive assistance in pain alleviation for patients with myalgia that is as equally effective as conventional PT treatment. However, further detailed studies are required considering larger samples to fully claim the effectiveness of this device.


2021 ◽  
Vol 26 (4) ◽  
pp. 74-80
Author(s):  
І.О.  Mitiuriaeva-Korniyko ◽  
O.V. Kuleshov ◽  
Ya.A. Medrazhevska ◽  
L.O. Fik ◽  
T.D. Klets

The article presents summarized materials on connective tissue dysplasia of the heart, primary mitral valve prolapse, dysfunction of the autonomic system. Aim of research: to estimate the condition of autonomic nervous system in children with primary mitral valve prolapse. We examined 106 children with mitral valve prolapse aged from 13 to 17 years old on the clinical base of city hospital “Center of mother and child” in Vinnitsya. Research included time and frequency domain (evaluation with cardiointervalography. Final results were compared with the control group records. The results showed no statistical significance among time domain parameters in the main group of children. All these indices displayed tendency to sympathetic and parasympathetic autonomic nervous system tonus increase in boys. However, sympathicotonia tendency was noted in girls only. Frequency domain parameters showed similar results, compared with the previous. Nevertheless, very low frequency parameters had statistically significant difference in both subgroups of patience with mitral valve prolapse, including males (3205.8±190.9 against 1717±154, р<0.05) and females (3280±220.1 against 1433±811, р<0.05). There were no statistically significant difference among other frequency domain parameters. Conclusions: we estimated that children with mitral valve prolapse have imbalanced autonomic homeostasis manifested by tone disturbances of both autonomic vegetative system branches with sympathetic predominance. Patients with primary mitral valve prolapse generally have increased sympathetic tone - both boys and girls - according to spectral analysis of heart rate variability indices, heart rate oscillation power of a very low frequency in particular (p<0.05). In children with mitral valve prolapse, the tone of parasympathetic nervous system is generally normal; there is a tendency to its increase in boys and decrease in girls. These children should be under close medical supervision by pediatricians and cardiologists.


Sign in / Sign up

Export Citation Format

Share Document