scholarly journals Identification of animal fats via compound specific δ13C values of individual fatty acids: assessments of results for reference fats and lipid extracts of archaeological pottery vessels

2002 ◽  
Vol 29 ◽  
pp. 73-96 ◽  
Author(s):  
Richard P. Evershed ◽  
Stephanie N. Dudd ◽  
Mark S. Copley ◽  
Anna Mutherjee

The possibility of obtaining molecular information from lipid residues associated with archaeological pottery has dramatically increased the potential for deriving new information on the use of ancient vessels and the commodities processed therein. Motivated by the high proportion of the archaeological potsherds that have been shown to contain animal fats, a new approach invol- ving compound specific stable isotope analysis of remnant fats has been developed to retrieve infor- mation which will allow new insights into animal exploitation, dietary preferences and vessel use amongst prehistoric peoples. The new approach uses the δ13C values of the major saturated fatty acid (C16:0 and C18:0) determined by gas chromatography-combustion-isotope ratio mass spectrometry (GC–C–IRMS) to characterise the origins of animal fat recovered from archaeological pottery.

Author(s):  
Xing Wang ◽  
Henk G. Jansen ◽  
Haico Duin ◽  
Harro A. J. Meijer

AbstractThere are two officially approved methods for stable isotope analysis for wine authentication. One describes δ18O measurements of the wine water using Isotope Ratio Mass Spectrometry (IRMS), and the other one uses Deuterium-Nuclear Magnetic Resonance (2H-NMR) to measure the deuterium of the wine ethanol. Recently, off-axis integrated cavity output (laser) spectroscopy (OA-ICOS) has become an easier alternative to quantify wine water isotopes, thanks to the spectral contaminant identifier (SCI). We utilized an OA-ICOS analyser with SCI to measure the δ18O and δ2H of water in 27 wine samples without any pre-treatment. The OA-ICOS results reveal a wealth of information about the growth conditions of the wines, which shows the advantages to extend the official δ18O wine water method by δ2H that is obtained easily from OA-ICOS. We also performed high-temperature pyrolysis and chromium reduction combined with IRMS measurements to illustrate the “whole wine” isotope ratios. The δ18O results of OA-ICOS and IRMS show non-significant differences, but the δ2H results of both methods differ much more. As the δ2H difference between these two methods is mainly caused by ethanol, we investigated the possibility to deduce deuterium of wine ethanol from this difference. The results present large uncertainties and deviate from the obtained 2H-NMR results. The deviation is caused by the other constituents in the wine, and the uncertainty is due to the limited precision of the SCI-based correction, which need to improve to obtain the 2H values of ethanol as alternative for the 2H-NMR method.


2018 ◽  
Author(s):  
Frank Keppler ◽  
Enno Bahlmann ◽  
Markus Greule ◽  
Heinz Friedrich Schöler ◽  
Julian Wittmer ◽  
...  

Abstract. Chloromethane (CH3Cl) is an important provider of chlorine to the stratosphere but yet lacks detailed knowledge of its budget. Stable isotope analysis is potentially a powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog-chamber at 293 ± 1 K. We measured the increasing stable hydrogen isotope values of the unreacted CH3Cl using compound specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be −242 ± 7 mUr (or ‰) and −280 ± 11 mUr, respectively. For comparison, we performed similar experiments using methane (CH4) as the target compound with OH and obtained a fractionation constant of −205 ± 6 mUr which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.


Manufacturing ◽  
2003 ◽  
Author(s):  
L. Shelley Xie ◽  
Agus Sudjianto

A new FEA based design approach of optimal robust fixture configuration is proposed in this paper, which employs a surrogate model through computer experiment to significantly reduce the intensive computing effort involving numerous FEA system response evaluations. The effects of the fixture variability to the workpiece performance variability are assessed through an efficient robustness evaluation method, First Order Reliability Method (FORM), based on the surrogate computer model. Not restricted to primary datum surface, this new approach enables simultaneous determination of robust locator/clamp locations and clamping forces for a deformable workpiece and thus captures interaction between locating and clamping. The effectiveness of this approach is illustrated though an application example. The results of robustness analysis reveal new information and suggest that the optimal solution resulted from deterministic optimization may not be the best solution when the design is subjected to variability.


2020 ◽  
Author(s):  
Caroline Welte ◽  
Jens Fohlmeister ◽  
Melina Wertnik ◽  
Lukas Wacker ◽  
Bodo Hattendorf ◽  
...  

Abstract. A novel technique making use of laser ablation coupled online to accelerator mass spectrometry (LA-AMS) allows analyzing the radiocarbon (14C) concentration in carbonate samples continuously at high spatial resolution within very short analysis times. This new technique can provide radiocarbon data similar to the spatial resolution of stable carbon (C) isotope measurements by isotope-ratio mass spectrometry (IRMS) and, thus, can help to interpret δ13C signatures, which otherwise are difficult to understand due to numerous processes contributing to changes in C-isotope changes ratios. In this work we analyzed δ13C and 14C on the Holocene stalagmite SPA 127 from the high-alpine Spannagel Cave (Austria). Combined stable carbon and radiocarbon profiles allow to identify three growth periods characterized by different δ13C signatures: (i) the period > 8 ka BP is characterized by relatively low δ13C values with small variability combined with a comparably high radiocarbon reservoir effect (expressed as dead carbon fraction, dcf) of around 60 %. This points towards C contributions of host rock dissolution and/or from an old organic matter (OM) reservoir in the karst potentially mobilized due to the warm climatic conditions of the early Holocene. (ii) Between 3.8–8 ka BP a strong variability in δ13C reaching values from −8 to +1 ‰ with a generally lower dcf was observed. The δ13C variability is most likely caused by changes in gas exchange processes in the cave, which are induced by reduced drip rates as derived from reduced stalagmite growth rates. Additionally, the lower dcf indicates that the OM reservoir is contributing less to stalagmite growth in this period possibly as a result of reduced precipitation or because it is exhausted. (iii) In the youngest section between 2.4–3.8 ka BP, comparably stable and low δ13C values combined with an increasing dcf reaching up to 50 % are again hinting towards a contribution of an aged OM reservoir in the karst.


Author(s):  
Viktorija Ponomarenko

The progress in the digital single market (DSM) has been acknowledged as one of the 10 political priorities by the European Commission since 2015. It could contribute € 415 billion per year (GDP) to the economy of the 28 EU Member States and create hundreds of thousands of new jobs. Nowadays, the ICT sector and the European Digital Agenda have declared it as one of the seven pillars of the Europe 2020 strategy. In order to speed up the development of new information technology and its commercialisation, it is necessary to increase software quality aimed at accelerating and improving technology transfer, taking into account process quality management. The aim of this article is to give an overview of a new approach to producing an additional value of the software development projects to improve the technology transfer process.


Sign in / Sign up

Export Citation Format

Share Document