scholarly journals A Low Cost Synthesis and Characterization of CuO Nanoparticles for Photovoltaic Applications

2019 ◽  
Vol 60 (1) ◽  
pp. 17-23
Author(s):  
A. A. Yankson ◽  
A. Kuditcher ◽  
G. Gebreyesus ◽  
M. N. Y. H. Egblewogbe ◽  
J. K. A. Amuzu ◽  
...  

A simple low cost chemical route has been used to synthesize cupric oxide nanoparticles. The synthesized CuO nanoparticles were characterized using XRD, TEM and UV-absorption. X-ray diffraction analysis showed the synthesized nanoparticles to be a pure cupric oxide. EDAX analysis showed the presence of copper and Oxygen in the as prepared CuO nano particles, with the AAS indicating that Cu2+ represented 53.5% of the sample. The particle size and particle size distribution of the cupric oxide nanoparticles were obtained by transmission electron microscopy (TEM) whereas the crystallite size and crystallite size distribution were obtained by X-ray diffraction. The particle size was found to be between 20 nm and 60 nm. The particle size distribution obtained from cumulative percentage frequency plots features a log-normal function. Absorbance measurements and analysis showed that the material has an absorbance peak at 314 nm and energy bandgap of 1.48 eV, making it a good candidate for photovoltaic applications.

2009 ◽  
Vol 610-613 ◽  
pp. 1323-1326
Author(s):  
Tao Yu ◽  
Jian Dong Ye ◽  
Ying Jun Wang

The hydroxyapatite (HA) was synthesized by wet mechanochemical method;the effects of surfactant, such as triethanolamine, polyethylene glycol (200000), sodium hexametaphosphate, polyvinylpyrrolidone (K30), on the particle size distribution of as-prepared HA powder were studied. Results were characterized by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Laser Scattering Particle Size Distribution Analyzer. The results show that the addition of surfactants eliminated the agglomeration of the powder and the uniform, fine particles (D10=0.1149μm, D50=0.12551μm, D90=0.1481μm) were obtained with the Triethanolamine (6 wt %) and Sodium hexametaphosphate (4 wt %) respectively. Our work demonstrates applicability of the mechanosynthesis for reproducible and low-cost synthesis of uniform, fine HCA powder in large batch-sizes.


2021 ◽  
Vol 33 (10) ◽  
pp. 2287-2292
Author(s):  
K. Vijayashree ◽  
K. Sheshappa Rai

Insertion of metal-oxide nanoparticles to polymers stipulate the modification of physical properties of polymers over and above the accomplishment of new features in the polymer matrix. In the current study, an attempt was made to disperse the CuO nanoparticles in the polyvinyl alcohol and hydroxypropyl methylcellulose (HPMC) blend to investigate the structural, mechanical and optical properties of the nanocomposite. Blend was prepared in different ratios using PVA and HPMC, viz. 25:50, 50:50 and 75:25 wt%. The CuO nanoparticles were added to the 75:25 PVA:HPMC blend in different percentage like 0.5,1 and 1.5%. The polymer with and without CuO incorporation were subjected to X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-visible spectral analyses and mechanical strength, etc. The results revealed that the incorporation of the CuO nanoparticles enhanced the structural and mechanical properties of the polymer by forming successful nanocomposite.


2011 ◽  
Vol 672 ◽  
pp. 157-160
Author(s):  
Ionel Chicinaş ◽  
Viorel Pop ◽  
Florin Popa ◽  
Virgiliu Călin Prică ◽  
Traian Florin Marinca ◽  
...  

The formation of quaternary 76Ni17Fe5Cu2Cr (wt. %) alloy by mechanical alloying is investigated. The elemental powders of Ni, Fe, Cu and Cr where milled in argon atmosphere in a planetary ball mill for time up to 20 h. Formation of the alloy was checked by X-ray diffraction studies. It is found that the rapid formation of the alloy lead to the rapid establishment of an equilibrium between the welding and fracture process during milling, leading to a constant particle size distribution over a big range of milling time. The morphology of the powders, studied by scanning electron microscopy (SEM) confirms the rapid increase in size. The particle size distribution and the flowability of the powders are also analyzed as a function of milling time. Enhanced magnetization was found for the milled samples, compared to a cast alloy.


2014 ◽  
Vol 608 ◽  
pp. 3-7
Author(s):  
Srichalai Khunton ◽  
Siriphan Nilpairach ◽  
Supin Sangsuk

Lime mud from a pulp mill was used as an additive in brick clay from the southern part of Thailand. It was mixed with the clay from Cha-Aud district, Nakorn Sithammarat province. The chemical composition of lime mud and the clay was characterised by X-ray fluorescence (XRF), and the mineralogical composition was measured by X-ray diffraction (XRD). The particle size distribution was also measured. The main composition of lime mud is CaO, and Cha-Aud clay consists of SiO2 and Al2O3 as major oxides. The lime mud contains calcite as a major phase when Cha-Aud clay is constituted by quartz, kaolinite, illite and goethite. Particle size distribution of lime mud is in the range of 1-50 μm. After the lime mud was neutralized using hydrochloric acid, it was mixed with Cha-Aud clay at 10 wt%. Samples with and without lime mud were sintered at 700, 800, 900 and 1000°C for 1 hour. The results showed that lime mud can be used as an additive in brick clay. Both types of samples were similar in terms of physical properties when their linear firing shrinkage, water absorption and flexural strength were in the same range.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
N. Sahu ◽  
◽  
R. K. Duchaniya ◽  

The ZnO-CdO nanocomposite was prepared by sol-gel method by using their respective nitrates. It is a simple and low cost method to prepare nanocomposites. The drying temperature and drying period of prepared gel was varied during the synthesis process. The prepared samples were characterized by using scanning electron microscope (SEM), particle size analysis (PSA), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL) to get surface morphology, idea of getting particle of nanosized range so that further characterizations can be done, to study the optical property of synthesized nanocomposite and measure the band gap . The grain size determined by Scherrer’s formula was found to be between 30-50 nm.


Author(s):  
YASHWANI PRAKASH

Objectives: Tulsi (Ocimum tenuiflorum) leaves extract-based synthesis of cupric oxide nanoparticles (CuONPs), characterizations, and antimicrobial activity. Methods: The small cut leaves were washed with double distilled water and boiled for 30 min. After filtration, the extract was treated with 0.2 M copper acetate solution and the initial color change of this solution indicated formation of copper nanoparticles. This solution was stirred for a specific time, heated and treated with 0.1 M NaOH solution. The formation of CuONPs was confirmed by the development of brownish-black precipitates. Then, CuONPs have been tested for their antibacterial effects by applying well diffusion method against Escherichia coli, Streptococcus mutans, Proteus vulgaris, and Staphylococcus aureus. Results: The biologically synthesized CuONPs have been well characterized by using ultraviolet-visible, Fourier-transform infrared, X-ray powder diffraction, and field-emission scanning electron microscopy techniques and all these analytical methods indicated a successful and efficient formation of CuONPs. After the incubation period, significant zones of inhibition were observed for E. coli, S. mutans, P. vulgaris, and S. aureus. Conclusions: The method was found highly efficient, eco-friendly, and low cost for the synthesis of biologically important CuONPs. The CuONPs have been found an excellent antibacterial agent.


2020 ◽  
Vol 12 ◽  
Author(s):  
Md. Shoriful Islam ◽  
M. A. Sattar ◽  
M. A. Halim ◽  
Md. Asadul Hoque ◽  
Abdul Quader ◽  
...  

Background: Sand is one of the efficient sources of Silicon. We get quite easily the plethora of sand from the river side, Bangladesh. Utilization of the superfluous sand can be assisted to enhance our economy. Methods: In this work, silicon is extracted from sand by metal–thermite reduction process and the sample of sand is collected from padma river Rajshahi, Bangladesh. The process is environmentally benign and low cost. The reduction of the sand was performed with Mg powder, and purification was done by leaching out with HCl and HF. We have studied the structural properties, chemical nature and physical morphology. Results and conclusion: X-ray Diffraction (XRD) confirmed that the presence of elemental Si in the samples produced by Mg-thermite reduction process and the particle size was found 25.72±1.3 nm in an average. Surface morphology has been studied using Scanning Electron Microscopy (SEM) and the particle size seemed around 30 to 40 nm which was comparable to the obtained particle size from XRD. Fourier transform infrared spectroscopy (FTIR) showed the presence of Si-Si bonding in the investigating materials. The chemical nature of the sand has been studied by X-ray Fluorescence (XRF) analysis. Silicon content of sand was found about maximum 80%.


Sign in / Sign up

Export Citation Format

Share Document