scholarly journals Amino acids profile of catfish, crayfish and larva of edible dung beetle

2020 ◽  
Vol 22 (1) ◽  
pp. 9-16
Author(s):  
O.B. Oriolowo ◽  
O.J. John ◽  
U.B. Mohammed ◽  
D. Joshua

Protein is an important nutrient for growth and development of humans and its quality depends on the types and composition of its amino acids. The amino acid profile of dung beetle larva was determined and compared with those of catfish and crayfish by HPLC using Applied PTH Biosystem amino acid analyzer. The data obtained were analyzed with inferential statistics of Analysis of Variance (ANOVA) and means separated using LeastSignificance Difference (LSD). The results showed that there were significant differences in the samples for all the set criteria for amino acid quality: total amino acid (F = 219.9), percentage amino acid (F = 1095.4), 2, 6 2, 6 essential amino acid score (F = 2588.4), essential to non-essential amino acid ratio (F = 236.7) and predicted 2, 6 2, 6 protein efficiency ratio (F = 1049.4) all at P < 0.05. About 66.7% of the essential amino acids in dung beetle 2, 6larva satisfy human nutritional requirement while amino acids like tryptophan, histidine and threonine were significantly higher in dung beetle. The amino acid score of this insect was higher as it has the potential of over 100% protein synthesis as against 68.2% and 80.9% respectively for catfish and crayfish. Moreover, a consumption of 46 g of dung beetle larva can effectively satisfy the daily human amino acid requirement. The study concluded that the protein quality of insects especially dung beetle larva compared favorably with commonly consumed human protein diets like catfish and crayfish. Therefore entomophagy should be encouraged in the face of the present dwindling availability of animal protein food sources. Keywords: Amino acid score, Entomophagy, Protein energy malnutrition, Dung beetle

Food systems ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 4-11
Author(s):  
S. V. Zverev ◽  
V. I. Karpov ◽  
M. A. Nikitina

The paper emphasizes the importance of not only the quantitative but also qualitative composition of protein in nutrition. The authors propose protein classification into three main groups according to the concept of reference (ideal) protein. A mathematical model is examined to solve the task of rational mixture production upon the given profile of reference protein. Two variants of the criterion for formation of optimal composition are described. One of them presents the classical sum of squares of the residual for essential amino acid scores and 1. The second also presents the sum of squares of the residual for essential amino acid scores and 1 but with regard to only those amino acids, which scores are less than 1. The minima of these criteria at the set of variants for the content of ingredients are taken as targeted functions. The algorithm and the program of calculation were realized in the program environment Builder C++ 6.0. The macro flowchart of the algorithm is presented and detailed description of each block is given. The program interface before and after the start of the calculation module is shown. The main windows and interpretation of the presented data are described. An example of realization of the proposed mathematical apparatus when calculating a food model composition is given. Plant components (white kidney beans, flax, peanut, grit “Poltavskaya», dry red carrot) were used as an object of the research. Most plant proteins were incomplete. It is possible to regulate the chemical composition including correction of a protein profile by combination of plant raw materials. Analysis of alternative variants demonstrated that minimum essential amino acid score in the first composition was 0.79 (by the first criterion), in the second 1.0 (by the second criterion); the reference protein proportion in the mixture was 10.8 and 13.5, respectively, according to the first and second criterion. The comparative results by other quality indicators for protein in the mixture are also presented: the coefficient of amino acid score difference (CAASD), biological value (BV), coefficient of utility, essential amino acids index (IEAA).


2020 ◽  
Vol 7 (15) ◽  
pp. 43-57
Author(s):  
Agada Adaeze Bob-Chile ◽  
Peter Uchenna Amadi

This study was carried out to determine the essential oil components, protein qualities, fatty acid composition, and free radical scavenging potentials of leaves of Cola lepidota K. Schum. (Malvaceae) and Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill. (Irvingiaceae) using chromatographic and spectrophotometric methods. Thirty five bioactive components were isolated from C. lepidota leaves with myrcene, phytol, ephedrine, hexadecanoic acid, and 1,14-tetradecanediol as the main compounds while phytol, 2-furancarboxaldehyde, 5-(hydroxymethyl)-, 1-hexadecyne, carotene, and humulene were the predominant components of the I. gabonensis leaves. Leucine and arginine were the predominant essential amino acids, whereas glutamic acid and serine were the main non-essential amino acids in both leaves. The total amino acid (TAA) (70.92 g/100g), total non-essential amino acid (TNEAA) (45.87 g/100 g), and total acidic amino acid (TAAA) (23.01 g/100 g) of C. lepidota were high whereas I. gabonensis recorded higher Total essential amino acid (TEAA) (28.98 g/100 g), total aromatic amino acid (TArAA) (7.21 g/100 g), total branched chain amino acid (TBCAA) (14.28 g/100g), predicted protein efficiency ratios (P-PERs), and essential amino acid index (EAAI). C. lepidota contained 55.72% of unsaturated fatty acids, with predominance of linolenic and linoleic acids, while I. gabonensis produced 74.46% of saturated fatty acids, having myristic, lauric, and palmitic acid as the main compounds. All the radical scavenging potentials of both leaves were concentration dependent and produced higher DPPH, hydrogen peroxide, and ABTS radical scavenging potentials than the standards. This study has thus provided the scientific backing for the inclusion of both leaves for dietary and therapeutic purposes.


2019 ◽  
Vol 7 (1-2) ◽  
pp. 16-22
Author(s):  
Pal Pepo

As regards wheat varieties constituting a natural ploid series the issue of analysing diploid, tetraploid and hexaploid species is topical since ancient varieties can play significant roles in contemporary agriculture as well. Seventeen winter wheat varieties, out of which 2 diploid varieties carried genome A, 9 diploidic types had genomes AB, two varieties had genomes AG and four varieties were hexaploid ones with genomes ABD, were analysed from the point of view of their amino acid compositions. The amino acid contents of Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ile, Leu, Tyr, Phe, His, Lys, Arg, Pro (a total of 17) were determined in the varieties listed above. It has been found that the amino acid contents of the grains genotype AA Triticum boeticum and T. monococcum exceeded the amino acid content of T. aestivum in respect of all the amino acids analysed in this experiment, with Glu being the only exception. In comparison with the aestivum wheat, essential amino acid contents showed a similarly favourable picture in the diploidic varieties mentioned. As regards type AB tetraploid varieties excesses of 13-16%, in comparison to the aestivum wheat, were found in essential amino acid contents. The amounts of non-essential amino acids in all the winter wheat varieties showed decreases irrespective of the ploid level. What concerns the total amino acid content, all the winter wheat varieties with the exception of T. monococcum (A), T. dicoccoides (AB) and T. dicoccum (AB) contained less amino acid than the aestivum wheat. All the monocarbonic acid and aromatic as well as heterocyclic amino acid contents of the wildly growing Triticum boeticum (A) and the grown Triticum monococcum (A) (with polaric, apolaric R groups, diamino radicles) exceeded the same contents of T. aestivum. The value of the monoamino-dicarbonic acid, however, was lower in our experiment.  


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110320
Author(s):  
Patrick M Aja ◽  
Boniface A Ale ◽  
Ezebuilo U Ekpono ◽  
Ifeoma Nwite ◽  
Lucy Aja ◽  
...  

The aim was to evaluate the amino acid compositions of three commonly consumed leafy vegetables ( Solanum aethiopicum, Amaranthus  hybridus, and Telfairia occidentalis) in Abakaliki, Ebonyi State. Leafy vegetables are important protective foods and beneficial for the maintenance of healthy living and prevention of diseases. The fresh leaves of A. hybridus, T. occidentalis, and S. aethiopicum were air-dried under room temperature for 1 week. The dried samples were further milled into a fine powder using a mechanical grinder and were stored in an air-tight plastic container. Amino acid content was determined using an applied Bio-system (phenylthiohydantoin, PTH) amino acid analyzer. Among amino acids determined in the vegetables, glutamic acid had the highest value with 12.59, 11.20, and 11.96 g/100 g protein, which was followed closely by leucine with 9.81, 7.94, 9.28 g/100 g protein, and aspartic acid with 8.99, 8.62, and 9.74 g/100 g protein in S. aethiopicum, A. hybridus, and T. occidentalis, respectively on dry weight bases. The leaf that contained the highest total amino acid (TAA) was S. aethiopicum with 88.69 g/100 g protein followed by T. occidentalis with 80.39 g/100 g protein while A. hybridus being the lowest, had 73.38 g/100 g protein. The limiting essential amino acid was tryptophan with 1.98 g/100 g protein while leucine with 9.0 g/100 g protein was the most abundant TAA. The percentage concentration of different groups of amino acid in vegetables revealed that total essential amino acid (TEAA) had 54.85%, total non-essential amino acid (TNEAA) had 48.27%, total neutral amino acid (TNAA) had 22.24%, total acidic amino acid (TAAA) had 32.48%, total basic amino acid (TBAA) had 11.53%, total aromatic amino acid (TArAA) had 11.89% while total sulfur amino acid (TSAA) had 3.94%. The results indicate that the vegetables studied are rich in essential amino acids and could serve as a good source of quality protein. Therefore, they could be recommended as food supplements, especially when animal proteins become more expensive as a source of protein.


1977 ◽  
Vol 37 (3) ◽  
pp. 289-308 ◽  
Author(s):  
A. A. Woodham ◽  
P. S. Deans

1. Two series of protein feeding-stuffs each consisting of a fish meal, meat-and-bone meal, soya-bean meal, groundnut meal and sunflower-seed meal were analysed for total amino acid composition and evaluated, both individually and combined in all possible pairs, as supplements to cereal-based diets for growing chicks by the total protein efficiency (g weight gain/g protein consumed; TPE) procedure. Each pair of feeding-stuffs provided 120 g supplementary protein/kg diet and the diet was made up so that the relative amounts of protein provided by each of the pair of constituents were (w/w): 120:0, 100:20, 80:40, 60:60, 40:80, 20:100 and 0:120 respectively, in addition to 60 g protein/kg provided by cereals.2. In all but one of the twenty pairs of feeding-stuffs studied the mixtures exhibited a marked synergistic effect in that the TPE value was higher than the appropriately weighted mean of the TPE values obtained with the individual components.3. Neither chemical score ([amount of limiting amino acid/the chick's requirement for the same amino acid] × 100) nor essential amino acid index; geometric mean for the ratio, amount of essential amino acid: the chick's requirement for that amino acid, for all ten essential amino acids) calculated from the amino acid composition of the dietary constituents could be used routinely to predict the results of the chick growth test, although chemical score did parallel the TPE values in some instances. In a number of instances, mixtures containing an apparently less favourable amino acid composition than one of the components of the mixture gave a higher TPE value.4. It seems likely that the relative proportions of a number of amino acids determine the optimum combination of a mixture of proteins. The removal of amino acid deficiencies alone is not sufficient to ensure that a given mixture of proteins produces optimum performance in growing chickens.


2005 ◽  
Vol 88 (3) ◽  
pp. 877-887 ◽  
Author(s):  
Robert W Peace ◽  
G Sarwar Gilani

Abstract Amino acids in foods exist in a free form or bound in peptides, proteins, or nonpeptide bonded polymers. Naturally occurring L-amino acids are required for protein synthesis and are precursors for essential molecules, such as co-enzymes and nucleic acids. Nonprotein amino acids may also occur in animal tissues as metabolic intermediates or have other important functions. The development of bacterially derived food proteins, genetically modified foods, and new methods of food processing; the production of amino acids for food fortification; and the introduction of new plant food sources have meant that protein amino acids and amino acid enantiomers in foods can have both nutritional and safety implications for humans. There is, therefore, a need for the rapid and accurate determination of amino acids in foods. Determination of the total amino acid content of foods requires protein hydrolysis by various means that must take into account variations in stability of individual amino acids and resistance of different peptide bonds to the hydrolysis procedures. Modern methods for separation and quantitation of free amino acids either before or after protein hydrolysis include ion exchange chromatography, high performance liquid chromatography (LC), gas chromatography, and capillary electrophoresis. Chemical derivatization of amino acids may be required to change them into forms amenable to separation by the various chromatographic methods or to create derivatives with properties, such as fluorescence, that improve their detection. Official methods for hydrolysis and analysis of amino acids in foods for nutritional purposes have been established. LC is currently the most widely used analytical technique, although there is a need for collaborative testing of methods available. Newer developments in chromatographic methodology and detector technology have reduced sample and reagent requirements and improved identification, resolution, and sensitivity of amino acid analyses of food samples.


Parasitology ◽  
1970 ◽  
Vol 61 (3) ◽  
pp. 491-496 ◽  
Author(s):  
Stuart D. M. Watts

Few workers have studied the amino acid requirement of larval Digenea in vivo. Cheng (1963) conducted a study of three species of parasites, each from a different host, and suggested that both free and bound host amino acids act as food sources. His assumptions are based on the disappearance of free amino acids from the sera of infected molluscs and the qualitative similarities between parasite and host with respect to both free and bound amino acids. Negus (1968), working on Turritella communis infected with the sporocysts of Cercaria doricha, described an almost identical qualitative composition of both the free amino acid pools and the hydrolysates of host gonad and parasite tissue. He was of the opinion that this was not coincidental. Considerable quantitative similarities between the free amino acids were also evident. Read, Rothman & Simmons (1963), in discussing cestode metabolism and membrane transport, proposed that it is the molar ratios of amino acids in the host which are important to the parasite and that the amino acid requirement may be more subtle than a simple need for certain components. Indeed, they suggest that this may form one basis for physiological host specificity.


2020 ◽  
pp. 58-63
Author(s):  
K.B. Gurieva ◽  
N.A. Khaba ◽  
E.A. Tarasova ◽  
S.L. Beletskiy

The results of the research on the assessment of the biological value of wheat after storage by the composition and ratio of amino acids are presented. It is shown that after 6.5 years of storage in elevator silos, the protein content in wheat met the requirements of the standard for class 3 wheat. The sum of all amino acids was from 11.5 to 13.1 g / 100 g, including essential amino acids — 4.0-4.5g/100g and non-essential — 7.8-8.7 g / 100 g. The proportion of essential amino acids was 33.7-35.3% of the total amino acid content. The calculation of the amino acid score demonstrated that the main amino acid limiting the nutritional value of wheat after storage is lysine with an amino acid score of 45-53%. The essential amino acids threonine, valine, isoleucine, and leucine are also classified as deficient, but with a higher value of the amino acid score, close to the complete protein.


Author(s):  
Florian Javelle ◽  
Descartes Li ◽  
Philipp Zimmer ◽  
Sheri L. Johnson

Abstract. Emotion-related impulsivity, defined as the tendency to say or do things that one later regret during periods of heightened emotion, has been tied to a broad range of psychopathologies. Previous work has suggested that emotion-related impulsivity is tied to an impaired function of the serotonergic system. Central serotonin synthesis relies on the intake of the essential amino acid, tryptophan and its ability to pass through the blood brain barrier. Objective: The aim of this study was to determine the association between emotion-related impulsivity and tryptophan intake. Methods: Undergraduate participants (N = 25, 16 women, 9 men) completed a self-rated measure of impulsivity (Three Factor Impulsivity Index, TFI) and daily logs of their food intake and exercise. These data were coded using the software NutriNote to evaluate intakes of tryptophan, large neutral amino acids, vitamins B6/B12, and exercise. Results: Correlational analyses indicated that higher tryptophan intake was associated with significantly lower scores on two out of three subscales of the TFI, Pervasive Influence of Feelings scores r =  –.502, p < . 010, and (lack-of) Follow-Through scores, r =  –.407, p < . 050. Conclusion: Findings provide further evidence that emotion-related impulsivity is correlated to serotonergic indices, even when considering only food habits. It also suggests the need for more research on whether tryptophan supplements might be beneficial for impulsive persons suffering from a psychological disorder.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 203
Author(s):  
Denisa Avdouli ◽  
Johannes F. J. Max ◽  
Nikolaos Katsoulas ◽  
Efi Levizou

In a cascade hydroponic system, the used nutrient solution drained from a primary crop is directed to a secondary crop, enhancing resource-use efficiency while minimizing waste. Nevertheless, the inevitably increased EC of the drainage solution requires salinity-tolerant crops. The present study explored the salinity-tolerance thresholds of basil to evaluate its potential use as a secondary crop in a cascade system. Two distinct but complemented approaches were used; the first experiment examined basil response to increased levels of salinity (5, 10 and 15 dS m−1, compared with 2 dS m−1 of control) to identify the limits, and the second experiment employed a cascade system with cucumber as a primary crop to monitor basil responses to the drainage solution of 3.2 dS m−1. Growth, ascorbate content, nutrient concentration, and total amino acid concentration and profile were determined in both experiments. Various aspects of basil growth and biochemical performance collectively indicated the 5 dS m−1 salinity level as the upper limit/threshold of tolerance to stress. Higher salinity levels considerably suppressed fresh weight production, though the total concentration of amino acids showed a sevenfold increase under 15 dS m−1 and 4.5-fold under 5 and 10 dS m−1 compared to the control. The performance of basil in the cascade system was subject to a compromise between a reduction of fresh produce and an increase of total amino acids and ascorbate content. This outcome indicated that basil performed well under the conditions and the system employed in the present study, and might be a good candidate for use as a secondary crop in cascade-hydroponics systems.


Sign in / Sign up

Export Citation Format

Share Document