scholarly journals Equilibrium, Kinetic and Thermodynamic Studies of Biosorption of Methylene Blue on Goethite Modified Baobab Fruit Pod (Adansonia Digitata L.)

2020 ◽  
Vol 24 (7) ◽  
pp. 1229-1243
Author(s):  
A.H. Alabi ◽  
E.O. Oladele ◽  
A.J.O. Adeleke ◽  
F.C. Oni ◽  
C.A. Olanrewaju

Methylene Blue (MB) was adsorbed from aqueous solution using Baobab (Adansonia digitata L.) fruit pod and its goethite modified form. Adsorbents were characterized using Fourier Transform-Infra Red (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). Batch experiments were conducted at room temperature (26.8 °C) and the adsorption data were fitted using Langmuir, Freundlich, Temkin and Dubinin- Radushkevich isotherms. Also, kinetic data was fitted using Pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion models. Goethite modified baobab (GMB) appeared to have a coarse microporous surface with smoother surface and larger pore volumes compared to unmodified baobab (UB). The –C=O band was observed at 1631 and 1636 cm-1 for UB and GMB. The –OH band was observed at 3447.00 cm-1 and 3442 cm-1 for UB andGMB respectively. Langmuir model was suitable for describing the adsorption data of UB with R2 of 0.9293 while Temkin model was best for fitting adsorption data of MB on GMB with R2 of 0.9691. However, maximum adsorption capacity was obtained with Freundlich adsorption isotherm (15.4253 and 43.1301 mg/g for UB and GMB respectively). The maximum biosorption were 8.98 mg/g and 9.86 mg/g for UB and GMB respectively at pH 10. Pseudo-second-order kinetic model best fitted the kinetic data with R2 values of 0.9968 and 0.9993 for UB and GMB, ΔHo values were 83.123 KJ/mol and 361.094 KJ/mol for UB and GMB, while ΔSo values were 3.084 J/mol/ K and 1.765 J/mol/K for UB and GMB respectively. GMB adsorbed more of MB than UB and the process was endothermic. Keywords: Biosorption, Goethite, Baobab, Isotherms, Methylene blue.

In this study, the hydroxyapatite powder is investigated for both of methylene blue and thymol blue in aqueous solution. The physical and chemical properties of the adsorbent were evaluated systematically using the different techniques including Microsoft Excel programming, linear regression model and also the coefficient of determination. Batch adsorption experiments were conducted to determine the effect of contact time, solution pH, initial dye concentrations, and also the adsorbent dosage on adsorption. The adsorption kinetic parameters confirmed the better fitting of pseudo-second order kinetic model for both of methylene blue and thymol blue. The isotherm data of methylene blue and thymol blue could be well described by the Freundlich isotherm model which means the adsorption is multilayer adsorption with non-uniform distribution of adsorption heat and affinities over the heterogeneous surface. The maximum adsorption capacity (KF) of methylene blue and thymol blue is found to be 0.2736 (L/mg) and 11.18407 (L/mg) respectively. The high specific surface area and the porous structure with some acidic functional groups on the surface were obviously responsible for high dyes adsorption onto hydroxyapatite (HA). Adsorption kinetics data were modeled with the application of Pseudo first order, Pseudo second order and Intraparticle diffusion models. The results revealed that the Pseudo second order model was the best fitting model. Which means that, the adsorption mechanism followed two stages in which the first one was fast and the other was slower step. Which means the adsorption of dye molecules was limited by intra particle diffusion and film diffusion, as well as, the adsorption rate in both of adsorption system are depends only on the slower step.The Boyd plot exposed that the intra-particle diffusion was the rate controlling step of the adsorption process of both of methylene blue and thymol blue molecules by HA powder. However, the adsorption of methylene blue molecules (basic solution) using of HA as adsorbent particles is found to be extremely preferable than thymol blue molecules.


2017 ◽  
Vol 55 (1) ◽  
pp. 54
Author(s):  
Le Cao The ◽  
Vu Minh Tan ◽  
Phan Thi Binh

Composite based on eucalyptus leaf and polyaniline (EL-PANi) was prepared by chemical polymerization method. It showed that the function groups belonging to polyaniline and eucalyptus leaf were found through IR analysis and the nanostructure of composite was explained by SEM images. The adsorption of  Pb2+ was carried out onto composite in aqueous solution via varying pH, contact time, and its initial concentration. The experimental adsorption data fitted well into Freundlich adsorption isotherm model (r2 = 0.9873). The adsorption process followed pseudo-second order kinetic with r2 = 0.9995. The maximum adsorption capacity of Pb2+ onto that composite was 172.4138 mg/g  by Langmuir equation and KF was 58.7527 mg/g by Freundlich one.


2019 ◽  
Vol 80 (10) ◽  
pp. 1931-1943 ◽  
Author(s):  
Adedapo O. Adeola ◽  
Patricia B. C. Forbes

Abstract A novel graphene wool (GW) material was used as adsorbent for the removal of phenanthrene (PHEN) and pyrene (PYR) from aqueous solution. Adsorption kinetics, adsorption isotherms, thermodynamics of adsorption and effect of pH, ionic strength, and temperature on the adsorption of PHEN and PYR onto GW were comprehensively investigated. Isothermal and kinetic experimental data were fitted to Langmuir, Freundlich, Temkin, Sips and Dubinin–Radushkevich models, as well as pseudo-first-order and pseudo-second-order kinetic models. The adsorption kinetic data best fit the pseudo-second-order kinetic model for PHEN and PYR sorption with R2 value >0.999, whilst the Sips model best fit isotherm data. Kinetic data revealed that 24 hr of contact between adsorbent and polycyclic aromatic hydrocarbons (PAHs) was sufficient for maximum adsorption, where the Langmuir maximum adsorption capacity of GW for PHEN and PYR was 5 and 20 mg g−1 and the optimum removal efficiency was 99.9% and 99.1%, respectively. Thermodynamic experiments revealed that adsorption processes were endothermic and spontaneous. Desorption experiments indicated that irreversible sorption occurred with a hysteresis index greater that zero for both PAHs. The high adsorption capacity and potential reusability of GW makes it a very attractive material for removal of hydrophobic organic micro-pollutants from water.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Marouane El Alouani ◽  
Saliha Alehyen ◽  
Mohammed El Achouri ◽  
M’hamed Taibi

Metakaolin-based geopolymers are aluminosilicate materials that can be used as cationic dye adsorbents in aqueous system treatment. Our aim in this paper is to study the ability of geopolymer powder produced from metakaolin and alkaline activators to act as an adsorbent to remove methylene blue (MB). The solid materials were systematically analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier-transform infrared spectrometery (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and the point of zero charge. XRF, FTIR, XRD, SEM, and EDX analyses confirmed the formation of a geopolymer composite by geopolymerization reaction. The influence of various experimental factors such as geopolymer dosage, pH, initial dye concentration, contact time, and temperature was assessed. Adsorption isotherms were evaluated by Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms. Kinetics data were studied using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The thermodynamic parameters, namely, Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°), were determined. The results indicated that the maximum decolorization was found in high pH values. The collected isotherm data were best fitted by the Langmuir isotherm, and the maximum adsorption capacity of dye onto the geopolymer was 43.48 mg/g. The experiment kinetics followed the pseudo-second-order kinetic models. The thermodynamic results demonstrated that the adsorption of the obtained material occurs spontaneously as an endothermic process. The results confirmed that the prepared adsorbent can be used for remediation of water contaminated by MB dye.


2015 ◽  
Vol 17 (4) ◽  
pp. 701-715 ◽  

<div> <p>The present study investigates the ability of formaldehyde treated <em>Simarouba glauca</em> seed shell powder for removal of methylene blue (MB) from aqueous solutions. Batch adsorption studies were carried out under various experimental conditions such as agitation time, dye concentration, adsorbent dose and pH. The adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), XRD, BET and CHNS analysis. The adsorption data were analysed using Langmuir, Freundlich, Temkin and Dubinin - Radushkevich isotherms. Equilibrium data fitted well to Langmuir isotherm with maximum adsorption capacity of 111.1 mg g <sup>-1</sup>. Adsorption kinetic data were verified using pseudo first order, pseudo second order and Intraparticle diffusion model. The kinetic data were found to fit well with pseudo second order model.</p> </div> <p>&nbsp;</p>


2016 ◽  
Vol 4 (2) ◽  
pp. 105-112
Author(s):  
Lalchhing puii ◽  
◽  
Seung-Mok Lee ◽  
Diwakar Tiwari ◽  
◽  
...  

A mesoporous silica was synthesized by annealing (3-Aminopropyl) triethoxysilane grafted chitosan at 800˚C. The mesoporous silica was characterized by the XRD (X-ray diffraction) analysis. The BET specific surface area and pore size of silica was found to be 178.42 m2/g and 4.13 nm. The mesoporous silica was then employed for the efficient remediation of aqueous solutions contaminated with Cu(II) under batch and column reactor operations. The mesoporous silica showed extremely high per cent removal of Cu(II) at wide pH range i.e., pH ~2.0 to 7.0. Relatively a fast uptake of Cu(II) was occurred and high percentage removal was obtained at initial concentrations studied from 1.0 to 15.0 mg/L. The equilibrium state sorption data were utilized for the Langmuir and Freundlich adsorption isotherm studies. Moreover, the effect of an increase in background electrolyte concentrations from 0.0001 to 0.1 mol/L NaNO3 was assessed for the uptake of Cu(II) by mesoporous silica. The equilibrium sorption was achieved within 240 min of contact and the kinetic data is best fitted to the pseudo-second-order and fractal like pseudo-second-order kinetic models. In addition, the mesoporous silica was used for dynamic studies under column reactor operations. The breakthrough curve was then used for the non-linear fitting of the Thomas equation and the loading capacity of the column for Cu(II) was estimated.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jhonatan R. Guarín ◽  
Juan Carlos Moreno-Pirajan ◽  
Liliana Giraldo

Currently, there is a great pollution of water by the dyes; due to this, several studies have been carried out to remove these compounds. However, the total elimination of these pollutants from the aquatic effluents has represented a great challenge for the scientific community, for which it is necessary to carry out investigations that allow the purification of water. In this work, we studied the bioadsorption of methylene blue on the surface of the biomass obtained from the algae D. antarctica. This material was characterized by SEM and FTIR. To the data obtained in the biosorption experiments, different models of biosorption and kinetics were applied, finding that the best fit to the obtained data is given by applying the pseudo-second-order models and the Toth model, respectively. It was also determined that the maximum adsorption capacity of MB on the surface of the biomass is 702.9 mg/g, which shows that this material has great properties as a bioadsorbent.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


Author(s):  
Tasrina R. Choudhury ◽  
Snahasish Bhowmik ◽  
M. S. Rahman ◽  
Mithun R. Nath ◽  
F. N. Jahan ◽  
...  

Sawdust supported nano-zerovalent (NZVI/SD) iron was synthesized by treating sawdust with ferrous sulphate followed by reduction with NaBH4. The NZVI/SD was characterized by SEM, XRD, FTIR and Chemical method. Adsorption of As (III) by NZVI/SD was investigated and the maximum uptake of As (III) was found at pH value of 7.74 and equilibrium time of 3 hrs. The adsorption isotherm modelling revealed that the equilibrium adsorption data were better fitted with the Langmuir isotherm model compared with the Freundlich Isotherm model. This study revealed that the maximum As (III) ions adsorption capacity was found to be 12.66 mg/g for using NZVI/SD adsorbent. However, the kinetics data were tested by pseudo-first-order and pseudo-second-order kinetic models; and it was observed that the adsorption data could be well fitted with pseudo-second-order kinetics for As (III) adsorption onto NZVI/SD depending on both adsorbate concentration and adsorption sites. The result of this study suggested that NZVI/SD could be developed as a prominent environment-friendly adsorbent for the removal of As (III) ions from aqueous systems.


SAINTIFIK ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 104-115
Author(s):  
Agusriyadin Agusriyadin

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal. The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.


Sign in / Sign up

Export Citation Format

Share Document