scholarly journals Susceptibility pattern of Escherichia coli from urinary tract infections to antibiotics and methanol extracts of Olax subscorpioidea and Sida corymbosa

2020 ◽  
Vol 17 (1) ◽  
pp. 75-80
Author(s):  
Philip A. Idowu ◽  
Babatunde M. Okanlawon ◽  
Habeeb O. Salam

Antibiotic resistance in urinary tract infections (UTIs), of which Escherichia coli causes about 80% of cases is on increase, causing mortality, morbidity and increased health care costs. Clinical isolates of E. coli (13) from UTIs were tested for susceptibility to standard antibiotics and extracts of Olax subscorpioidea and Sida corymbosa. Methanol extracts of the plants were screened at 20, 40, 80 and 100 mg/ml against the isolates using agar-welldiffusion method while antibiogram was determined by Kirby-Bauer disc diffusion method. The minimum inhibitory concentrations (MICs) of the plants` extracts and two antibiotics were determined by agar dilution method. The isolates were mostly susceptible to ofloxacin and 100% resistance to augmentin. Extracts of the plants showed good and dose-dependent activities, even on the multidrug resistant E. coli isolates. The zones of inhibition of the extracts ranged 9-16 mm while the MICs ranged 0.5-10 mg/ml on the isolates. This study has shown that MDR E. coli in UTIs are still prevalent and that the roots of O. subscorpioidea and stem of S. corymbosa extracts have good antibacterial activities against the isolates. The results justified the traditional use of the plants to treat infections generally and the potential utilization in the treatment of UTIs. Keywords: Urinary tract infection; Antibiotics; Escherichia coli; Olax subscorpioidea; Sida corymbosa

2014 ◽  
Vol 8 (07) ◽  
pp. 818-822 ◽  
Author(s):  
Farzaneh Firoozeh ◽  
Mohammad Zibaei ◽  
Younes Soleimani-Asl

Introduction: Plasmid-mediated quinolone resistance, which complicates treatment, has been increasingly identified in Escherichia coli isolates worldwide. The purpose of this study was to identify the plasmid-mediated qnrA and qnrB genes among the quinolone-resistant Escherichia coli isolated from urinary tract infections in Iran. Methodology: A total of 140 Escherichia coli isolates were collected between March and October 2012 from urinary tract infections in Khorram Abad, Iran. All isolates were tested for quinoloe resistance using the disk diffusion method. Also, all quinolone-resistant isolates were screened for the presence of the qnrA and qnrB genes by polymerase chain reaction. Minimum inhibitory concentrations (MICs) of ciprofloxacin for the qnr-positive isolates were determined. Results: One hundred sixteen (82.8%) of 140 Escherichia coli isolates were nalidixic acid-resistant; among them, 14 (12.1%) and 9 (7.8%) were qnrA and qnrB-positive, respectively. Two quinolone-resistant isolates harbored both qnrA and qnrB. Among 63 ciprofloxacin-resistant isolates, 14 (22.2%) and 9 (14.3%) were found to carry qnrA and qnrB genes, respectively. The ciprofloxacin MIC range was 0.25–512 μg/mL for 23 qnr-positive Escherichia coli isolates, 18 of which had MICs values of 4–512 μg/mL. Conclusion: Our study shows that the frequency of plasmid-mediated quinolone resistance genes among E. coli isolates in Iran is high.


2020 ◽  
Vol 5 (4) ◽  
pp. 176
Author(s):  
Purity Z. Kubone ◽  
Koleka P. Mlisana ◽  
Usha Govinden ◽  
Akebe Luther King Abia ◽  
Sabiha Y. Essack

We investigated the phenotypic and genotypic antibiotic resistance, and clonality of uropathogenic Escherichia coli (UPEC) implicated in community-acquired urinary tract infections (CA-UTIs) in KwaZulu-Natal, South Africa. Mid-stream urine samples (n = 143) were cultured on selective media. Isolates were identified using the API 20E kit and their susceptibility to 17 antibiotics tested using the disk diffusion method. Extended-spectrum β-lactamases (ESBLs) were detected using ROSCO kits. Polymerase chain reaction (PCR) was used to detect uropathogenic E. coli (targeting the papC gene), and β-lactam (blaTEM/blaSHV-like and blaCTX-M) and fluoroquinolone (qnrA, qnrB, qnrS, gyrA, parC, aac(6’)-Ib-cr, and qepA) resistance genes. Clonality was ascertained using ERIC-PCR. The prevalence of UTIs of Gram-negative etiology among adults 18–60 years of age in the uMgungundlovu District was 19.6%. Twenty-six E. coli isolates were obtained from 28 positive UTI samples. All E. coli isolates were papC-positive. The highest resistance was to ampicillin (76.9%) and the lowest (7.7%) to amoxicillin/clavulanic acid and gentamycin. Four isolates were multidrug-resistant and three were ESBL-positive, all being CTX-M-positive but SHV-negative. The aac(6’)-Ib-cr and gyrA were the most detected fluoroquinolone resistance genes (75%). Isolates were clonally distinct, suggesting the spread of genetically diverse UPEC clones within the three communities. This study highlights the spread of genetically diverse antibiotic-resistant CA-UTI aetiologic agents, including multidrug-resistant ones, and suggests a revision of current treatment options for CA-UTIs in rural and urban settings.


Author(s):  
Somayeh Bakhtiari ◽  
Hassan Mahmoudi ◽  
Sara Khosravi Seftjani ◽  
Mohammad Ali Amirzargar ◽  
Sima Ghiasvand ◽  
...  

Background and Objectives: Escherichia coli is the most common causative agent of urinary tract infections (UTIs) in 90-80% of patients in all age groups. Phylogenetic groups of these bacteria are variable and the most known groups are A, B1, B2 and D. The present study aimed to evaluate the phylogenetic groups of E. coli samples obtained from UTIs and their relation with antibiotic resistance patterns of isolates. Materials and Methods: In this study 113 E. coli isolates were isolated from distinct patients with UTIs referred to Hamadan hospitals. After biochemical and molecular identification of the isolates, typing and phylogenetic grouping of E. coli strains were performed using multiplex PCR targeting chu, yjaA and TSPE4.C2 genes. The anti-microbial susceptibility of the isolates to amikacin, ampicillin, trimethoprim-sulfamethoxazole, amoxicillin/clavulanic acid, ciprofloxacin, cefotaxime, imipenem, aztreonam, gentamicin, meropenem, nitrofurantoin, nalidixic acid and cefazolin was determined using disk diffusion method. Results: Of 113 isolates, 50 (44.2%), 35 (31%), 23 (20.4%) and 5 (4.4%) of samples belonged to group B2, group D, group A and group B1 phylogenetic groups respectively. All isolates were susceptible to meropenem, imipenem (100%), followed by amikacin (99.1%). The highest resistance rates were observed against ampicillin (74.3%) and nalidixic acid (70.8%). Correlation between phylogenetic groups and antibiotic susceptibilities was significant only with co-amoxiclav (P = 0.006), which had the highest resistance in phylogenetic group A. Conclusion: Prevalence of different phylogroup and resistance associated with them in E. coli samples could be variable in each region. Therefore, investigating of these items in E. coli infections, could be more helpful in selecting the appropriate antibiotic treatment and epidemiological studies.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1156
Author(s):  
Wei-Hung Lin ◽  
Yen-Zhen Zhang ◽  
Po-Yao Liu ◽  
Po-Shun Chen ◽  
Shining Wang ◽  
...  

Escherichia coli causing urinary tract infections (UTIs) are one of the most common outpatient bacterial infections. This study aimed to compare the characteristics of E. coli isolated from UTI patients in a single medical center in 2009–2010 (n = 504) and 2020 (n = 340). The antimicrobial susceptibility of E. coli was determined by the disk diffusion method. PCRs were conducted to detect phylogenetic groups, ST131, K1 capsule antigen, and 15 virulence factors. Phylogenetic group B2 dominated in our 2009–2010 and 2020 isolates. Moreover, no phylogenetic group E strains were isolated in 2020. E. coli isolates in 2020 were more susceptible to amoxicillin, ampicillin/sulbactam, cefuroxime, cefmetazole, ceftazidime, cefoxitin, tetracycline, and sulfamethoxazole/trimethoprim, compared to the isolates in 2009–2010. Extensively drug-resistant (XDR)-E. coli in 2009–2010 were detected in groups B1 (5 isolates), B2 (12 isolates), F (8 isolates), and unknown (1 isolate). In 2020, XDR-E. coli were only detected in groups A (2 isolates), B2 (5 isolates), D (1 isolate), and F (4 isolates). The prevalence of virulence factor genes aer and fimH were higher in E. coli in 2009–2010 compared to those in 2020. In contrast, afa and sat showed higher frequencies in E. coli isolates in 2020 compared to E. coli in 2009–2010.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ziad Daoud ◽  
Claude Afif

The purpose of this study was to investigate the bacterial etiology of urinary tract infections in one of the busiest hospitals of Lebanon and to examine the epidemiologic and microbiologic properties of Escherichia coli isolated from urinary tract infections of Lebanese patients over a 10-year period. Methods. This retrospective study analyzed the data generated between 2000 and 2009 (10,013 Gram-positive and Gram-negative bacteria). Bacterial identification was based on standard culture and biochemical characteristics of isolates. Antimicrobial susceptibility was tested by the disk diffusion method, and ESBL production was detected by synergy with third-generation cephalosporins and amoxiclav. Results. E. coli was the most frequent isolate throughout the ten years (60.64% of the total isolates). It was followed by Klebsiella pneumoniae and Proteus sp., Pseudomonas aeruginosa, Enterococcus sp., and Streptococcus agalactiae. E. coli occurred more frequently in women (69.8%) than in men (61.4%). The lowest percentage of susceptibility of E. coli was manifested against piperacillin and ampicillin. An increase in the production of ESBL was observed (2.3% in 2000 to 16.8% in 2009). Conclusions. The etiology of urinary tract infections and their susceptibility profiles are important to be evaluated in countries like Lebanon where a severe misuse of antibiotics at all levels is observed.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Lívia Slobodníková ◽  
Barbora Markusková ◽  
Michal Kajsík ◽  
Michal Andrezál ◽  
Marek Straka ◽  
...  

Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Dana Willner ◽  
Serene Low ◽  
Jason A. Steen ◽  
Narelle George ◽  
Graeme R. Nimmo ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are one of the most commonly acquired bacterial infections in humans, and uropathogenicEscherichia colistrains are responsible for over 80% of all cases. The standard method for identification of uropathogens in clinical laboratories is cultivation, primarily using solid growth media under aerobic conditions, coupled with morphological and biochemical tests of typically a single isolate colony. However, these methods detect only culturable microorganisms, and characterization is phenotypic in nature. Here, we explored the genotypic identity of communities in acute uncomplicated UTIs from 50 individuals by using culture-independent amplicon pyrosequencing and whole-genome and metagenomic shotgun sequencing. Genus-level characterization of the UTI communities was achieved using the 16S rRNA gene (V8 region). Overall UTI community richness was very low in comparison to other human microbiomes. We strain-typedEscherichia-dominated UTIs using amplicon pyrosequencing of the fimbrial adhesin gene,fimH. There were nine highly abundantfimHtypes, and each UTI sample was dominated by a single type. Molecular analysis of the corresponding clinical isolates revealed that in the majority of cases the isolate was representative of the dominant taxon in the community at both the genus and the strain level. Shotgun sequencing was performed on a subset of eightE. coliurine UTI and isolate pairs. The majority of UTI microbial metagenomic sequences mapped to isolate genomes, confirming the results obtained using phylogenetic markers. We conclude that for the majority of acute uncomplicatedE. coli-mediated UTIs, single cultured isolates are diagnostic of the infection.IMPORTANCEIn clinical practice, the diagnosis and treatment of acute uncomplicated urinary tract infection (UTI) are based on analysis of a single bacterial isolate cultured from urine, and it is assumed that this isolate represents the dominant UTI pathogen. However, these methods detect only culturable bacteria, and the existence of multiple pathogens as well as strain diversity within a single infection is not examined. Here, we explored bacteria present in acute uncomplicated UTIs using culture-independent sequence-based methods.Escherichia coliwas the most common organism identified, and analysis ofE. colidominant UTI samples and their paired clinical isolates revealed that in the majority of infections the cultured isolate was representative of the dominant taxon at both the genus and the strain level. Our data demonstrate that in most cases single cultured isolates are diagnostic of UTI and are consistent with the notion of bottlenecks that limit strain diversity during UTI pathogenesis.


Author(s):  
Rachana Kanaujia ◽  
Amit Kumar ◽  
Malay Bajpai

Background: Urinary tract infections (UTIs) are one of the most common infections. For treatment of UTIs, there are limited antibiotics due to increased resistance among uropathogens. Two older antibiotics; Nitrofurantoin and Fosfomycin have become novel oral therapeutic options against uropathogens. Aim of the study was to identify UTI causing micro-organisms and evaluate in-vitro activity of nitrofurantoin and fosfomycin against most common isolated organism (E. coli).Methods: Results of urine samples culture and susceptibility testing over a period of 1 year were analysed and included in this study.Results: Micro-organisms were isolated from 568 urine samples. Most commonly isolated organism was Escherichia coli (40.50%), followed by Klebsiella spp. (20.07%) and Staphylococcus spp. (17.07%). Susceptibility of E. coli to nitrofurantoin and fosfomycin was 91.74% and 65.65% respectively. Conclusion: Good activity of nitrofurantoin and fosfomycin against E. coli indicates that these two drugs are potential therapeutic alternatives for urinary tract infections.


2018 ◽  
Vol 12 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Yacoub R. Nairoukh ◽  
Azmi M. Mahafzah ◽  
Amal Irshaid ◽  
Asem A. Shehabi

Background: Emergence of multi-drug resistant uropathogenic E. coli strains is an increasing problem to empirical treatment of urinary tract infections in many countries. This study investigated the magnitude of this problem in Jordan. Methods: A total of 262 E. coli isolates were recovered from urine samples of Jordanian patients which were suspected to have urinary tract infections (UTIs). All isolates were primarily identified by routine biochemical tests and tested for antimicrobial susceptibility by disc diffusion method. Fifty representative Multidrug Resistance (MDR) E. coli isolates to 3 or more antibiotic classes were tested for the presence of resistance genes of blaCTX-M- 1, 9 and 15, carbapenemase (blaIMP, blaVIM, blaNDM-1, blaOXA-48), fluoroquinolones mutated genes (parC and gyrA) and clone of ST131 type using PCR methods. Results: A total of 150/262 (57.3%) of E. coli isolates were MDR. Urine samples of hospitalized patients showed significantly more MDR isolates than outpatients. Fifty representative MDR E. coli isolates indicated the following molecular characteristics: All were positive for mutated parC gene and gyrA and for ST131 clone, and 78% were positive for genes of CTX-M-15, 76% for CTX-M-I and for 8% CTX-M-9, respectively. Additionally, all 50 MDR E. coli isolates were negative for carbapenemase genes (blaIMP, blaVIM, blaNDM-1, blaOXA-48), except of one isolate was positive for blaKPC-2 . Conclusion: This study indicates alarming high rates recovery of MDR uropathogenic E. coli from Jordanian patients associated with high rates of positive ST131 clone, fluoroquinolone resistant and important types of blaCTX-M.


Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Bijaya Muktan ◽  
Upendra Thapa Shrestha ◽  
Binod Dhungel ◽  
Bagish Chandra Mishra ◽  
Nabaraj Shrestha ◽  
...  

Abstract Background Plasmid-mediated resistance to the last-resort drugs: carbapenems and colistin is an emerging public health threat. The studies on the prevalence and co-expression of resistant genes among livestock and human pathogens are rare in Nepal. This is the first study in Nepal exploring the prevalence and co-existence of colistin resistance gene, mcr-1 along with carbapenemase resistance gene, OXA-48 in Escherichia coli isolated from poultry and clinical specimens. Methods A total of 240 rectal swabs from chickens of five different poultry farms of Kathmandu valley and 705 mid-stream urine samples from human subjects attending Kantipur Hospital, Kathmandu were collected between August, 2018 and March, 2019. Rectal swabs and urine specimens were cultured. E. coli isolated from the specimens were screened for antimicrobial susceptibility testing (AST) using disk diffusion method’. Minimum inhibitory concentration (MIC) of colistin was determined by agar dilution method using 0.5 µg/ml to 32 µg/ml. The E. coli isolates were first screened for mcr-1 followed by screening for OXA-48 genes using conventional Polymerase chain reaction (PCR). Results Of the total samples analyzed, E. coli was isolated from 31.7% (76/240) of poultry and 7.9% (56/705) of clinical specimens. In AST, 80% (61/76) of E. coli from poultry and 79% (44/56) from clinical specimens were MDR. The phenotypic prevalence of colistin resistance in poultry specimens were 31.6% (24/76) and clinical specimens were 21.4% (12/56). In PCR assay, 27.6% (21/76) of poultry and 19.6% (11/56) of clinical isolates had colistin resistant mcr-1 gene. MICs value of E. coli isolates ranged from 4 to 32 (µg/ml) in both clinical and poultry isolates. Prevalence of co-existing carbapenem resistance gene, OXA-48, among colistin resistant mcr-1 positive isolates was 38% (8/21) in poultry specimens and 18.2% (2/11) in clinical specimens. Conclusions The high prevalence of colistin and carbapenem resistant genes, and their co-existence in plasmid DNA of E. coli isolates in this study suggests the possible spread to other animal, human and environmental pathogens. Molecular methods in addition to the conventional diagnostics in laboratories can help in early diagnosis, effective management and control of their potential transmission.


Sign in / Sign up

Export Citation Format

Share Document