Survey of Commercially Available Cheese for Enterotoxigenic Escherichia coli1

1980 ◽  
Vol 43 (5) ◽  
pp. 395-398 ◽  
Author(s):  
BONITA A. GLATZ ◽  
STEVEN A. BRUDVIG

Seventy-eight commercial cheese samples were tested for the presence of Escherichia coli. None of the 136 E. coli isolates obtained produced either heat-labile or heat-stable enterotoxin, as measured in standard assays. None agglutinated in polyvalent antisera used to screen for classical enteropathogenic serotypes. None of the 47 E. coli isolates obtained from six raw milk samples produced enterotoxin, but eight agglutinated in one or more of the polyvalent antisera.

2006 ◽  
Vol 69 (2) ◽  
pp. 412-416 ◽  
Author(s):  
MICHAEL A. GRANT ◽  
JINXIN HU ◽  
KAREN C. JINNEMAN

A multiplex real-time PCR method was developed for detection of heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli. Approximately 10 CFU per reaction mixture could be detected in rinsates from produce samples. Several foods representative of varieties previously shown to have caused enterotoxigenic E. coli outbreaks were spiked and enriched for 4 or 6 h. Both heat-labile and heat-stable toxin genes could be detected in the foods tested, with the exception of hot sauce, with threshold cycle values ranging from 25.2 to 41.1. A procedure using membrane filtration which would allow enumeration of the enterotoxigenic E. coli population in a food sample in less than 28 h by real-time PCR analysis of colonies picked from media highly selective for E. coli was also developed.


2008 ◽  
Vol 71 (5) ◽  
pp. 1023-1027 ◽  
Author(s):  
R. N. COBBOLD ◽  
M. A. DAVIS ◽  
D. H. RICE ◽  
M. SZYMANSKI ◽  
P. I. TARR ◽  
...  

A survey for Shiga toxigenic Escherichia coli in raw milk and beef was conducted within a defined geographic region of the United States. Prevalence rates based on detection of Shiga toxin gene (stx) were 36% for retail beef, 23% for beef carcasses, and 21% for raw milk samples, which were significantly higher than were Shiga toxigenic E. coli isolation rates of 7.5, 5.8, and 3.2%, respectively. Seasonal prevalence differences were significant for stx positivity among ground beef and milk samples. Distribution of stx subtypes among isolates varied according to sample type, with stx1 predominating in milk, stx2 on carcasses, and the combination of both stx1 and stx2 in beef. Ancillary virulence markers eae and ehx were evident in 23 and 15% of isolates, respectively. Pulsed-field gel electrophoresis demonstrated associations between food isolates and sympatric bovine fecal, and human clinical isolates. These data demonstrate that non-O157 Shiga toxigenic E. coli is present in the food chain in the Pacific Northwest, and its risk to health warrants critical assessment.


Author(s):  
E. Seker ◽  
H. Yardimci

Three hundred rectal faecal samples and 213 raw milk samples obtained from the tanks and containers were examined using standard cultural methods. Escherichia coli O157:H7 was isolated from 11 (3.7 %) of 300 faecal samples and 3 (1.4 %) of 213 raw milk samples. It was determined that 8 (73 %) of E. coli O157:H7 strains isolated from faecal samples originated from water buffaloes younger than 2 years of age and 3 (27 %) from 2-year-old and older water buffaloes. This is the 1st isolation of Escherichia coli O157:H7 from faecal and milk samples of water buffaloes in Turkey.


2021 ◽  
pp. 2410-2418
Author(s):  
Waleed Younis ◽  
Sabry Hassan ◽  
Hams M. A. Mohamed

Background and Aim: Raw milk is considered an essential source of nutrition during all stages of human life because it offers a valuable supply of protein and minerals. Importantly, milk is considered a good media for the growth and contamination of many pathogenic bacteria, especially food-borne pathogens such as Escherichia coli. Thus, the objective of this study was to characterize E. coli and detect its virulence factors and antibiotic resistance from raw milk samples. Materials and Methods: Raw milk samples (n=100) were collected from different localities in Qena, Egypt, and investigated for the presence of E. coli using different biochemical tests, IMViC tests, serotyping to detect somatic antigen type, and molecularly by polymerase chain reaction (PCR) tests. The presence of different virulence and antimicrobial genes (hly, eae, stx1, stx2, blaTEM, tetA(A), and tetB genes) in E. coli isolates was evaluated using PCR. Results: The results demonstrated that 10 out of 100 milk samples were contaminated with E. coli. Depending on serology, the isolates were classified as O114 (one isolate), O27 (two isolates), O111 (one isolate), O125 (two isolates), and untypeable (five isolates) E. coli. The sequencing of partially amplified 16S rRNA of the untypeable isolates resulted in one isolate, which was initially misidentified as untypeable E. coli but later proved as Enterobacter hormaechei. Moreover, antibacterial susceptibility analysis revealed that nearly all isolates were resistant to more than 3 families of antibiotics, particularly to β-lactams, clindamycin, and rifampin. PCR results demonstrated that all E. coli isolates showed an accurate amplicon for the blaTEM and tetA(A) genes, four isolates harbored eae gene, other four harbored tetB gene, and only one isolate exhibited a positive stx2 gene. Conclusion: Our study explored vital methods for identifying E. coli as a harmful pathogen of raw milk using 16S rRNA sequencing, phylogenetic analysis, and detection of virulence factors and antibiotic-resistant genes.


1979 ◽  
Vol 9 (4) ◽  
pp. 493-497
Author(s):  
M H Merson ◽  
R B Sack ◽  
A K Kibriya ◽  
A Al-Mahmood ◽  
Q S Adamed ◽  
...  

Diagnosis of enterotoxigenic Escherichia coli diarrhea was made in 109 adult males with an acute dehydrating cholera-like syndrome in Dacca, Bangladesh, by testing 10 colonies isolated from admission stool specimens for production of heat-labile and heat-stable toxins. Toxin testing of one colony yielded a diagnosis in 92% of the cases, testing of two colonies yielded a diagnosis in 95% of the cases, testing of a pool of 5 colonies yielded a diagnosis in 95% of the cases, and testing of a pool of 10 colonies yielded a diagnosis in 96% of the cases. From stool cultures obtained on subsequent days, toxin testing of individual colonies and pools revealed diminished efficacy of pooling with decreasing numbers of enterotoxin-positive isolates in the pool. To detect the presence of enterotoxigenic E. coli in stools, toxin testing of 5 individual isolates and a pool of 10 colonies was found to be almost as effective as the testing of 10 individual isolates.


2019 ◽  
Vol 20 ◽  
Author(s):  
Laryssa F. Ribeiro ◽  
Mayhara M. C. Barbosa ◽  
Fernanda R. Pinto ◽  
Leticia F. Lavezzo ◽  
Gabriel A. M. Rossi ◽  
...  

Abstract This study focused on detecting diarrheagenic Escherichia coli, enteropathogenic E. coli (EPEC), Shiga-toxin-producing E. coli (STEC), enterohemorrhagic E. coli (EHEC or STEC:EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC) in raw milk, water, and cattle feces sampled from non-technified dairy farms located in the northeastern São Paulo State, Brazil. Thirty-six water samples were collected at different points, namely, water wells (8 samples), water intended for human consumption (8 samples), water from milking parlor (8 samples), and water intended for animal consumption (7 samples), headwaters (1 sample), rivers (3 samples), and reservoirs (1 sample). Three raw milk samples were taken directly from bulk tanks in each farm, totalizing 24 samples. Feces samples were collected using rectal swabs from 160 bovines (20 animals per farm). E. coli was detected in 128 feces samples (80%), 16 raw milk samples (66.67%), and 20 water samples (55.56%). STEC (26 samples, 16.25%), EPEC (10 samples, 6.25%), STEC: EPEC (5 samples, 3.13%), and STEC: ETEC (1 sample, 0.63%) were the most prevalent strains detected in samples from cattle feces. EPEC, STEC, and STEC: EPEC strains were detected in 4.17% (1 sample), 16.67% (4 samples), and 4.17% (1 sample) of raw milk samples, respectively. STEC strains were detected in water used in the milking parlor, while no EAEC strain was detected. As a conclusion, cattle feces are important contamination sources of pathogenic E. coli in non-technified dairy farms and, consequently, cross-contamination among feces, water, and/or raw milk can occur. The use of quality water and hygienic practices during milking are recommended to avoid contamination since pathogens can be transmitted to humans via raw milk or raw milk cheese ingestion.


1981 ◽  
Vol 87 (3) ◽  
pp. 413-419 ◽  
Author(s):  
P. N. Goldwater ◽  
K. A. Bettelheim ◽  
R. B. Ellis-Pegler

SummaryA study of stoolEscherichia coliin 60 children with gastroenteritis and 18 control children was carried out in Auckland, New Zealand in 1977. Toxigenic strains, heat labile and heat stable, predominated in the stools of only three children, all of whom had concomitant rotavirus. Classical enteropathogenicE. coli(EPEC) were found in patients and controls. Only one patient had many EPEC in the stool (086. H2), they were variably toxigenic and rotavirus was also present. No toxigenic serotype was isolated. Two potential pathogens were sometimes found. Overall there was no evidence for a substantial causative role for disease producingE. coliin these children.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0131484 ◽  
Author(s):  
Christiane Y. Ozaki ◽  
Caio R. F. Silveira ◽  
Fernanda B. Andrade ◽  
Roberto Nepomuceno ◽  
Anderson Silva ◽  
...  

2018 ◽  
Vol 12 (07) ◽  
pp. 533-541 ◽  
Author(s):  
Walid Elmonir ◽  
Etab Abo-Remela ◽  
Azza Sobeih

Introduction: Milk is an important food in Egypt and most of it is sold as raw milk in informal markets. Methodology: This study was conducted to investigate the public health risks of Escherichia coli and Staphylococcus aureus in milk sold in informal markets in Egypt. A total of 121 milk samples were analyzed for occurrence, virulence genes and antibiotic resistance of E. coli and S. aureus. Results: A total of 35/121 (28.9%) of milk samples were contaminated with 16/121 (13.2%) E. coli, 22/121 (18.2%) S. aureus, and 3/121 (2.5%) both isolates. Shiga-toxin producing E. coli (STEC), Enterotoxigenic E. coli (ETEC) and Enterotoxigenic S. aureus were detected in 5/121 (4.1%), 2/121 (1.7%) and 8/121 (6.6%) of the examined milk samples, respectively. Multiple drug resistances (MDRs) were showed by 14/16 (87.5%) and 21/22 (95.5%) of E. coli and S. aureus isolates, respectively. E. coli isolates showed high resistance for cephalothin (87.5%), ampicillin (68.8%) and tetracycline (68.8%), but were sensitive for gentamicin and chloramphenicol. Resistance phenotypes of E. coli were diverse; however, STEC isolates were significantly associated with co-resistance to cephalothin, ampicillin and tetracycline (P< 0.05). Two (9.1%) of S. aureus isolates were methicillin-resistant (MRSA) but sensitive to gentamicin (GS-MRSA). Five (22.7%) of S. aureus isolates were gentamicin-resistant methicillin-sensitive S. aureus (GR-MSSA). S. aureus isolates also showed high resistance for ampicillin (100%), tetracycline (90.1%) and sulfamethoxazole-trimethoprim (90.1%). Conclusion: These findings highlighted the potential public health hazards of E. coli and S. aureus pathogens in raw milk sold in informal markets in Egypt.


2002 ◽  
Vol 59 (3) ◽  
pp. 271-276
Author(s):  
Valentina Stojanovic ◽  
Miloje Cobeljic

The purpose of this study was to determine the presence of virulence factors (heat-labile, heat-stable enterotoxin, verotoxin, invasiveness, localized, aggregative and diffuse adherence) among E. coli strains isolated from sporadic cases and outbreaks of enterocolitis, which belonged to serogroups characteristic for enteropathogenic E. coli. Serogroup was determined in 57.2% of 622 strains isolated from sporadic cases, and among them virulence factors were detected in 23.6%. Serogroup was also determined in 73.3% of 90 outbreaks isolates tested and virulence factors were detected in 97% of them. The detection rate of virulence factors rarely exceeded 50% among strains belonging to any of serogroup that was determined. The obtained data suggested that the identification of E. coli as a causative agent of enterocolitis by serogroup determination was a reliable method in outbreaks, but not in sporadic cases of this disease.


Sign in / Sign up

Export Citation Format

Share Document