scholarly journals DIARRHEAGENIC Escherichia coli IN RAW MILK, WATER, AND CATTLE FECES IN NON-TECHNIFIED DAIRY FARMS

2019 ◽  
Vol 20 ◽  
Author(s):  
Laryssa F. Ribeiro ◽  
Mayhara M. C. Barbosa ◽  
Fernanda R. Pinto ◽  
Leticia F. Lavezzo ◽  
Gabriel A. M. Rossi ◽  
...  

Abstract This study focused on detecting diarrheagenic Escherichia coli, enteropathogenic E. coli (EPEC), Shiga-toxin-producing E. coli (STEC), enterohemorrhagic E. coli (EHEC or STEC:EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC) in raw milk, water, and cattle feces sampled from non-technified dairy farms located in the northeastern São Paulo State, Brazil. Thirty-six water samples were collected at different points, namely, water wells (8 samples), water intended for human consumption (8 samples), water from milking parlor (8 samples), and water intended for animal consumption (7 samples), headwaters (1 sample), rivers (3 samples), and reservoirs (1 sample). Three raw milk samples were taken directly from bulk tanks in each farm, totalizing 24 samples. Feces samples were collected using rectal swabs from 160 bovines (20 animals per farm). E. coli was detected in 128 feces samples (80%), 16 raw milk samples (66.67%), and 20 water samples (55.56%). STEC (26 samples, 16.25%), EPEC (10 samples, 6.25%), STEC: EPEC (5 samples, 3.13%), and STEC: ETEC (1 sample, 0.63%) were the most prevalent strains detected in samples from cattle feces. EPEC, STEC, and STEC: EPEC strains were detected in 4.17% (1 sample), 16.67% (4 samples), and 4.17% (1 sample) of raw milk samples, respectively. STEC strains were detected in water used in the milking parlor, while no EAEC strain was detected. As a conclusion, cattle feces are important contamination sources of pathogenic E. coli in non-technified dairy farms and, consequently, cross-contamination among feces, water, and/or raw milk can occur. The use of quality water and hygienic practices during milking are recommended to avoid contamination since pathogens can be transmitted to humans via raw milk or raw milk cheese ingestion.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3431 ◽  
Author(s):  
Woranich Hinthong ◽  
Natapol Pumipuntu ◽  
Sirijan Santajit ◽  
Suphang Kulpeanprasit ◽  
Shutipen Buranasinsup ◽  
...  

Subclinical mastitis is a persistent problem in dairy farms worldwide. Environmental Escherichia coli is the bacterium predominantly responsible for this condition. In Thailand, subclinical mastitis in dairy cows is usually treated with various antibiotics, which could lead to antibiotic resistance in bacteria. E. coli is also a reservoir of many antibiotic resistance genes, which can be conveyed to other bacteria. In this study, the presence of E. coli in milk and water samples was reported, among which enteropathogenic E. coli was predominant, followed by enteroaggregative E. coli and enterohemorrhagic E. coli, which was found only in milk samples. Twenty-one patterns of antibiotic resistance were identified in this study. Ampicillin- and carbenicillin-resistant E. coli was the most common among the bacterial isolates from water samples. Meanwhile, resistance to ampicillin, carbenicillin, and sulfamethoxazole-trimethoprim was the pattern found most commonly in the E. coli from milk samples. Notably, only the E. coli from water samples possessed ESBL phenotype and carried antibiotic resistance genes, blaTEM and blaCMY-2. This indicates that pathogenic E. coli in dairy farms is also exposed to antibiotics and could potentially transfer these genes to other pathogenic bacteria under certain conditions.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Natapol Pumipuntu ◽  
Sangkom Pumipuntu

Background and Aim: The problem of antimicrobial resistance of bacteria in both humans and animals is an important public health concern globally, which is likely to increase, including in Thailand, where carbapenem-resistant Enterobacteriaceae (CRE), such as Escherichia coli, are of particular concern. They are pathogens found in the gastrointestinal tract of humans and other animals as well as in the environment. They may cause opportunistic infection and are often resistant to antibiotics in various fields especially in animal husbandry, such as pets or livestock farms. This study aimed to investigate the occurrence of carbapenem-resistant E. coli from water samples of smallholder dairy farms in Saraburi and Maha Sarakham, Thailand. Materials and Methods: Sixty-four water samples were collected from 32 dairy farms in Kaeng Khoi district, Muak Lek district, and Wang Muang district of Saraburi Province, and Kantharawichai district and Mueang district of Maha Sarakham Province, Thailand. All samples were cultured and isolated for E. coli by biochemical tests. All E. coli isolates were tested for drug susceptibility using imipenem, meropenem, and drug resistance genes of carbapenemases such as blaNDM, blaIMP, and blaOXA48 of drug-resistant E. coli isolates detected by polymerase chain reaction (PCR) technique. Results: A total of 182 E. coli isolates were found (140 and 42 isolates from Saraburi and Maha Sarakham, respectively). Drug sensitivity tests found that two isolates of E. coli from water in Kaeng Khoi were resistant to imipenem; therefore, the incidence of E. coli resistance to carbapenem was 1.43% of Saraburi Province. On the other hand, there was no incidence of drug-resistant E. coli in Maha Sarakham. In addition, the detection of the drug-resistant gene of E. coli in both isolates by PCR showed the expression of blaNDM. Conclusion: This study reports E. coli resistance to antimicrobial drugs on livestock farms. It can be considered to be the first report of E. coli CRE detection in a dairy farm at Saraburi, which should be the subject of further extended study.


2008 ◽  
Vol 71 (5) ◽  
pp. 1023-1027 ◽  
Author(s):  
R. N. COBBOLD ◽  
M. A. DAVIS ◽  
D. H. RICE ◽  
M. SZYMANSKI ◽  
P. I. TARR ◽  
...  

A survey for Shiga toxigenic Escherichia coli in raw milk and beef was conducted within a defined geographic region of the United States. Prevalence rates based on detection of Shiga toxin gene (stx) were 36% for retail beef, 23% for beef carcasses, and 21% for raw milk samples, which were significantly higher than were Shiga toxigenic E. coli isolation rates of 7.5, 5.8, and 3.2%, respectively. Seasonal prevalence differences were significant for stx positivity among ground beef and milk samples. Distribution of stx subtypes among isolates varied according to sample type, with stx1 predominating in milk, stx2 on carcasses, and the combination of both stx1 and stx2 in beef. Ancillary virulence markers eae and ehx were evident in 23 and 15% of isolates, respectively. Pulsed-field gel electrophoresis demonstrated associations between food isolates and sympatric bovine fecal, and human clinical isolates. These data demonstrate that non-O157 Shiga toxigenic E. coli is present in the food chain in the Pacific Northwest, and its risk to health warrants critical assessment.


Author(s):  
E. Seker ◽  
H. Yardimci

Three hundred rectal faecal samples and 213 raw milk samples obtained from the tanks and containers were examined using standard cultural methods. Escherichia coli O157:H7 was isolated from 11 (3.7 %) of 300 faecal samples and 3 (1.4 %) of 213 raw milk samples. It was determined that 8 (73 %) of E. coli O157:H7 strains isolated from faecal samples originated from water buffaloes younger than 2 years of age and 3 (27 %) from 2-year-old and older water buffaloes. This is the 1st isolation of Escherichia coli O157:H7 from faecal and milk samples of water buffaloes in Turkey.


2021 ◽  
pp. 2410-2418
Author(s):  
Waleed Younis ◽  
Sabry Hassan ◽  
Hams M. A. Mohamed

Background and Aim: Raw milk is considered an essential source of nutrition during all stages of human life because it offers a valuable supply of protein and minerals. Importantly, milk is considered a good media for the growth and contamination of many pathogenic bacteria, especially food-borne pathogens such as Escherichia coli. Thus, the objective of this study was to characterize E. coli and detect its virulence factors and antibiotic resistance from raw milk samples. Materials and Methods: Raw milk samples (n=100) were collected from different localities in Qena, Egypt, and investigated for the presence of E. coli using different biochemical tests, IMViC tests, serotyping to detect somatic antigen type, and molecularly by polymerase chain reaction (PCR) tests. The presence of different virulence and antimicrobial genes (hly, eae, stx1, stx2, blaTEM, tetA(A), and tetB genes) in E. coli isolates was evaluated using PCR. Results: The results demonstrated that 10 out of 100 milk samples were contaminated with E. coli. Depending on serology, the isolates were classified as O114 (one isolate), O27 (two isolates), O111 (one isolate), O125 (two isolates), and untypeable (five isolates) E. coli. The sequencing of partially amplified 16S rRNA of the untypeable isolates resulted in one isolate, which was initially misidentified as untypeable E. coli but later proved as Enterobacter hormaechei. Moreover, antibacterial susceptibility analysis revealed that nearly all isolates were resistant to more than 3 families of antibiotics, particularly to β-lactams, clindamycin, and rifampin. PCR results demonstrated that all E. coli isolates showed an accurate amplicon for the blaTEM and tetA(A) genes, four isolates harbored eae gene, other four harbored tetB gene, and only one isolate exhibited a positive stx2 gene. Conclusion: Our study explored vital methods for identifying E. coli as a harmful pathogen of raw milk using 16S rRNA sequencing, phylogenetic analysis, and detection of virulence factors and antibiotic-resistant genes.


2019 ◽  
Vol 82 (12) ◽  
pp. 2194-2200 ◽  
Author(s):  
DIANA RIOS-MUÑIZ ◽  
JORGE F. CERNA-CORTES ◽  
CATALINA LOPEZ-SAUCEDO ◽  
ERIKA ANGELES-MORALES ◽  
MIRIAM BOBADILLA-del VALLE ◽  
...  

ABSTRACT In Mexico, the total milk production that family dairy farms (FDF) contribute is ca. 35%, but this milk is not evaluated for microbiological quality. Forty percent of the milk and dairy products consumed by Mexicans is unpasteurized. In total, 24 raw cow's milk samples from three FDF (one sample per each season from each FDF for two sequent years) were characterized for the presence of food quality indicator organisms, Staphylococcus aureus, Salmonella enterica, Listeria monocytogenes, and Mycobacterium spp., by standard procedures. Escherichia coli presence was also evaluated by a direct count method and diarrheagenic E. coli (DEC) by molecular methods. On the basis of Mexican guidelines for raw milk entering production, 42% of samples exceeded the aerobic mesophilic bacteria limits. A total of 83% raw milk samples were positive for total coliforms, 54% for fecal coliforms, and 46% for E. coli. Forty-three E. coli isolates were selected and characterized for the presence of 11 DEC loci; of theses, 40 isolates were negative for all DEC loci, and 3 isolates, all collected from the same sample, were Shiga toxin 2 (stx2) positive and O157 antigen negative, and one stx2 isolate was resistant to 6 of the 16 antibiotics tested. None of the 24 raw milk samples were positive for Salmonella enterica, L. monocytogenes, or staphylococcal enterotoxin. S. aureus was isolated from nine samples, of which only three samples harbored resistant isolates. From three samples, four nontuberculous mycobacterial isolates were recovered (Mycobacteroides chelonae, Mycobacteroides porcinum, and two Mycobacteroides abscessus). All four isolates produced biofilm and had sliding motility, and three isolates (M. porcinum and two M. abscessus) were resistant to the two antibiotics tested (clarithromycin and linezolid). FDF provide raw milk to a large proportion of the Mexican population, but its consumption could be harmful to health, emphasizing the need to implement national microbiological quality guidelines for raw milk intended for direct human consumption. HIGHLIGHTS


Author(s):  
M. More O'Ferrall-Berndt

Selected public health criteria of pasteurised milk available to the consumer from milk-shops in a pre-defined area of Pretoria compared with a national distributor's milk was evaluated. Of the 135 milk samples purchased from milk-shops, 87 % were not fit for human consumption on the basis of the minimum standards prescribed in the Foodstuffs, Cosmetics and Disinfectants Act, 1972 (Act 54 of1972). The national distributor's milk (n = 79) did not contain any pathogens, toxins nor inhibitory substances and passed all the criteria laid down in the Act. Even though milk-shop milk was sold as having been pasteurised, 38.5% of samples were alkaline phosphatase positive, indicating probable inadequate pasteurisation. Milk-shop milk quality varied between milk-shops and between sampling days and differed significantly (P <0.05) from the national distributor's milk. Total aerobic plate and coliform counts were generally high for all milk-shop milk samples. Somatic cell counts of milk-shop milk differed significantly (P < 0.05) from the national distributor's milk. Escherichia coli was detected in 1 ml of 17% of milk-shop milk, 95% of which originated from milk which was alkaline phosphatase positive. Salmonella spp. could not be detected in 1 ml in any of the E. coli-positive milk tested. Staphylococcus aureus was isolated from 40% of milk-shop milk samples, and S. aureus enterotoxins from 7.8 % of 51 cultures. Inhibitory substances were detected in 54.1 % of milk-shop milk. The presence of inhibitory substances and the isolation of E. coli and S. aureus (some of which were able to produce enterotoxins) indicated potentially unsafe milk and poses a serious public health risk to consumers.


2019 ◽  
Vol 17 (4) ◽  
pp. 597-608
Author(s):  
Caroline Rodrigues da Silva ◽  
Matheus Silva Sanches ◽  
Kawana Hiromori Macedo ◽  
Angélica Marim Lopes Dambrozio ◽  
Sergio Paulo Dejato da Rocha ◽  
...  

Abstract Water-borne diseases like diarrheagenic Escherichia coli (DEC)-induced gastroenteritis are major public health problems in developing countries. In this study, the microbiological quality of water from mines and shallow wells was analyzed for human consumption. Genotypic and phenotypic characterization of DEC strains was performed. A total of 210 water samples was analyzed, of which 153 (72.9%) contained total coliforms and 96 (45.7%) E. coli. Of the E. coli isolates, 27 (28.1%) contained DEC genes. The DEC isolates included 48.1% Shiga toxin-producing E. coli (STEC), 29.6% enteroaggregative E. coli (EAEC), 14.9% enteropathogenic E. coli (EPEC), 3.7% enterotoxigenic E. coli (ETEC), and 3.7% enteroinvasive E. coli (EIEC). All the STECs had cytotoxic effects on Vero cells and 14.8% of the DEC isolates were resistant to at least one of the antibiotics tested. All DEC formed biofilms and 92.6% adhered to HEp-2 cells with a prevalence of aggregative adhesion (74%). We identified 25 different serotypes. One EPEC isolate was serotype O44037:H7, reported for the first time in Brazil. Phylogenetically, 63% of the strains belonged to group B1. The analyzed waters were potential reservoirs for DEC and could act as a source for infection of humans. Preventive measures are needed to avoid such contamination.


2018 ◽  
Vol 12 (07) ◽  
pp. 533-541 ◽  
Author(s):  
Walid Elmonir ◽  
Etab Abo-Remela ◽  
Azza Sobeih

Introduction: Milk is an important food in Egypt and most of it is sold as raw milk in informal markets. Methodology: This study was conducted to investigate the public health risks of Escherichia coli and Staphylococcus aureus in milk sold in informal markets in Egypt. A total of 121 milk samples were analyzed for occurrence, virulence genes and antibiotic resistance of E. coli and S. aureus. Results: A total of 35/121 (28.9%) of milk samples were contaminated with 16/121 (13.2%) E. coli, 22/121 (18.2%) S. aureus, and 3/121 (2.5%) both isolates. Shiga-toxin producing E. coli (STEC), Enterotoxigenic E. coli (ETEC) and Enterotoxigenic S. aureus were detected in 5/121 (4.1%), 2/121 (1.7%) and 8/121 (6.6%) of the examined milk samples, respectively. Multiple drug resistances (MDRs) were showed by 14/16 (87.5%) and 21/22 (95.5%) of E. coli and S. aureus isolates, respectively. E. coli isolates showed high resistance for cephalothin (87.5%), ampicillin (68.8%) and tetracycline (68.8%), but were sensitive for gentamicin and chloramphenicol. Resistance phenotypes of E. coli were diverse; however, STEC isolates were significantly associated with co-resistance to cephalothin, ampicillin and tetracycline (P< 0.05). Two (9.1%) of S. aureus isolates were methicillin-resistant (MRSA) but sensitive to gentamicin (GS-MRSA). Five (22.7%) of S. aureus isolates were gentamicin-resistant methicillin-sensitive S. aureus (GR-MSSA). S. aureus isolates also showed high resistance for ampicillin (100%), tetracycline (90.1%) and sulfamethoxazole-trimethoprim (90.1%). Conclusion: These findings highlighted the potential public health hazards of E. coli and S. aureus pathogens in raw milk sold in informal markets in Egypt.


2017 ◽  
Vol 14 (2) ◽  
pp. 271-275 ◽  
Author(s):  
M. A. Islam ◽  
S. M. L. Kabir ◽  
S. K. Seel

     The study was intended for molecular detection of E. coli isolated from raw cow’s milk. A total of 20 milk samples were collected from different upazila markets of Jamalpur, Tangail, Kishoreganj and Netrokona districts of Bangladesh. Milk samples were cultured onto various culture media for the isolation of bacteria. The isolated bacteria were identified by studying staining characteristics, cultural properties on different selective media, biochemical tests, catalase and coagulase test, and finally by PCR. Out of 20 samples, 15 (75%) milk samples were found positive for E. coli. 15 Escherichia coli isolates were amplified by 16S rRNA gene based PCR. Antimicrobial sensitivity test was carried out to ascertain the susceptibility of the organism to various antibiotics. Its results showed that the E. coli isolates were resistant to amoxycillin (86.67%) and erythromycin (73.33%) but sensitive to azithromycin (53.33%), ciprofloxacin (86.67%), gentamicin (86.67%), norfloxacin (80%) and streptomycin (66.67%).


Sign in / Sign up

Export Citation Format

Share Document