Comparative Growth of Listeria monocytogenes and Pseudomonas fluorescens on Precooked Chicken Nuggets Stored under Modified Atmospheres1

1991 ◽  
Vol 54 (11) ◽  
pp. 841-843 ◽  
Author(s):  
DOUGLAS L. MARSHALL ◽  
PATTI L. WIESE-LEHIGH ◽  
JOHN HENRY WELLS ◽  
A. JAMES FARR

The purpose of this study was to determine the effects of modified atmosphere packaging (MAP) on growth of Listeria monocytogenes and Pseudomonas fluorescens on precooked dark-meat chicken nuggets during refrigerated storage. The two organisms were separately inoculated on nuggets and stored under modified atmospheres (MA1 or MA2) at 3, 7, or 11°C. The results show that the growth of P. fluorescens was inhibited by MAP to a greater extent than was the growth of L. monocytogenes. Even though growth of L. monocytogenes was inhibited by MAP, the organism was still capable of growth at all three temperatures. The effectiveness of MAP decreased with increasing temperature. Little difference in inhibition of growth was observed for either organism with MA1 or MA2.

2012 ◽  
Vol 75 (6) ◽  
pp. 1063-1070 ◽  
Author(s):  
LI L. KUDRA ◽  
JOSEPH G. SEBRANEK ◽  
JAMES S. DICKSON ◽  
ELAINE M. LARSON ◽  
AUBREY F. MENDONCA ◽  
...  

This study was conducted to investigate the efficacy of controlling Listeria monocytogenes on frankfurters and cooked pork chops with irradiation and modified atmosphere packaging (MAP) containing a high concentration of CO2. Frankfurters and cooked pork chops were inoculated with a five-strain cocktail of L. monocytogenes and packaged in vacuum or high-CO2 MAP. Irradiation was applied to each product at 0, 0.5, 1.0, or 1.5 kGy. No significant packaging effect was found for the radiation sensitivity of L. monocytogenes. Radiation D10-values for L. monocytogenes were 0.66 ± 0.03 and 0.70 ± 0.05 kGy on frankfurters and 0.60 ± 0.02 and 0.57 ± 0.02 kGy on cooked pork chops in vacuum and high-CO2 MAP, respectively. High-CO2 MAP was more effective than vacuum packaging for controlling the growth of survivors during refrigerated storage. These results indicate that irradiation and high-CO2 MAP can be used to improve control of L. monocytogenes in ready-to-eat meats.


Food Control ◽  
2016 ◽  
Vol 59 ◽  
pp. 513-523 ◽  
Author(s):  
Victoria Heinrich ◽  
Marija Zunabovic ◽  
Lisa Nehm ◽  
Johannes Bergmair ◽  
Wolfgang Kneifel

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1211
Author(s):  
Paul Culliney ◽  
Achim Schmalenberger

Minimally processed ready-to-eat (RTE) vegetables are increasingly consumed for their health benefits. However, they also pose a risk of being ingested with food-borne pathogens. The present study investigated the ability of RTE spinach and rocket to support the growth of Listeria monocytogenes as previous studies provided contradicting evidence. Findings were compared to growth on iceberg lettuce that has repeatedly been shown to support growth. Products were inoculated with a three-strain mix of L. monocytogenes at 10 and 100 cfu g−1 and stored in modified atmosphere (4 kPa O2, 8 kPa CO2) at 8 °C over 7–9 days. Spinach demonstrated the highest growth potential rate of 2 to 3 log10 cfu g−1 over a 9-day period with only marginal deterioration in its visual appearance. Growth potential on rocket was around 2 log10 cfu g−1 over 9 days with considerable deterioration in visual appearance. Growth potential of iceberg lettuce was similar to that of rocket over a 7-day period. Growth curves fitted closely to a linear growth model, indicating none to limited restrictions of growth over the duration of storage. The high growth potentials of L. monocytogenes on spinach alongside the limited visual deterioration highlight the potential risks of consuming this raw RTE food product when contaminated.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4128
Author(s):  
Olaf K. Horbańczuk ◽  
Małgorzata Moczkowska ◽  
Joanna Marchewka ◽  
Atanas G. Atanasov ◽  
Marcin A. Kurek

Ostrich meat is a high-quality dietetic product, however, it is very sensitive to deterioration during storage. The aim of this study was to assess the effect of packaging systems on the fatty acid (FA) profiles in ostrich meat during refrigerated storage. The systems were: Vacuum packaging (VP) and modified atmosphere packaging (MAP) in two combinations of gases: MAP1 (40% O2/40% CO2/20% N2) and MAP2 (60% O2/30% CO2/10% N2). Samples were taken from the M. ilifibularis (IF) muscles of eight ostriches in each treatment group. The packs were stored in a refrigerator at 2 °C and analyzed at 0, 4, 8, 12 and 16 days. The packaging conditions and storage time had an impact on the concentration of bioactive compounds such as polyunsaturated fatty acids (PUFA), including n-3 such as C18:3, C20:5 (EPA) and C22:6 (DHA). The least changes in composition of n-3 and the sum of PUFA were recorded in ostrich meat packaged in vacuum, followed by that packaged using MAP1 and MAP2. The sum of n-6 PUFAs decreased significantly by 2.1% for MAP2, and only by 0.7% for vacuum packaging as the experiment progressed. A significant deterioration of these compounds was observed in all package systems, especially from day 12 until day 16 of storage.


1994 ◽  
Vol 57 (12) ◽  
pp. 1098-1100 ◽  
Author(s):  
J. M. FARBER ◽  
E. DALEY

The growth of Listeria monocytogenes on turkey roll slices stored at 4 and 10°C under a variety of different modified-atmospheres (Ms) was examined. While increasing in numbers on turkey roll slices stored in air, or in environments containing CO2 levels of 30 or 50% (remainder N2), L. monocytogenes was inhibited by a MAs containing 70% CO2, 30% N2. In all cases, Listeria did not grow as well in any of the MAs as compared to air. In addition, for all MAs tested, pseudomonads were inhibited to an equal or greater extent than L. monocytogenes. It is recommended that any MA-packaged turkey sandwiches with a shelf-life approaching 30 days, should be stored in a MA containing at least 70% CO2 to guard against the potential growth of L. monocytogenes.


2011 ◽  
Vol 74 (11) ◽  
pp. 1833-1839 ◽  
Author(s):  
L. L. KUDRA ◽  
J. G. SEBRANEK ◽  
J. S. DICKSON ◽  
A. F. MENDONCA ◽  
Q. ZHANG ◽  
...  

Salmonella is one of the leading causes of human foodborne illnesses originating from meat and poultry products. Cross-contamination of Salmonella from raw to cooked products continues to be problematic in the food industry. Therefore, new intervention strategies are needed for meat and poultry products. Vacuum or modified atmosphere packaging (MAP) are common packaging techniques used to extend the shelf life of meat products. Irradiation has been well established as an antibacterial treatment to reduce pathogens on meat and poultry. Combining irradiation with high-CO2+CO MAP was investigated in this study for improving the control of Salmonella enterica Typhimurium on chicken breast meat. The radiation sensitivities (D10-values) of this pathogen in chicken breast meat were found to be similar in vacuum and in high-CO2+CO MAP (0.55 ± 0.03 kGy and 0.54 ±0.03 kGy, respectively). Irradiation at 1.5 kGy reduced the Salmonella population by an average of 3 log. Some Salmonella cells survived in both vacuum and high-CO2+CO MAP through 6 weeks of refrigerated storage following irradiation. This pathogen also grew in both vacuum and MAP when the product was held at 25°C. This study demonstrated that irradiation is an effective means of reducing Salmonella on meat or poultry, but packaging in either vacuum or MAP had little impact during subsequent refrigerated storage.


2019 ◽  
Vol 86 (4) ◽  
pp. 483-489
Author(s):  
Nikolaos Solomakos ◽  
Maria Govari ◽  
Evropi Botsoglou ◽  
Andreana Pexara

AbstractThe aim of this work was to examine the effect of modified atmosphere packaging on the physicochemical and microbiological changes of Graviera Agraphon cheese during refrigerated storage. Blocks of Graviera Agraphon cheese weighing around 200 g were packaged under natural (control) or modified atmosphere packaging (MAP) conditions (50% N2 – 50% CO2) and stored at 4 °C or 10 °C for up to 85 d. Prior to packaging, groups of cheese blocks were inoculated with one each of the following foodborne pathogens at around 104 log cfu/g: Listeria monocytogenes, Salmonella Typhimurium, Escherichia coli O157:H7 or Staphylococcus aureus, whilst further groups of cheese blocks were not inoculated. The protein, fat, moisture and salt contents as well as the pH of control and MAP cheese samples did not change significantly (P > 0.05) throughout 4 °C storage, while the pH values of control and MAP cheese samples were significantly (P < 0.05) reduced at 10 °C storage. At 10 °C storage, yeasts and molds, psychrotrophs and lactic acid bacteria (LAB) were significantly higher (P < 0.05) for the normal atmosphere than the MAP cheese samples after the 4th, 8th and 4th days, respectively. At 4 °C storage, the yeasts and molds or psychrotrophs were significantly higher (P < 0.05) than those of control after the 6th and 15th days, respectively at 4 °C storage. All foodborne pathogens showed a higher decrease (P < 0.05) at 10 °C than 4 °C storage. S. aureus proved more sensitive in inactivation in the MAP conditions than atmospheric conditions. L. monocytogenes and S. aureus presented a higher decrease than that of E. coli O157:H7 and S. Typhimurium. In conclusion, MAP proved efficient in retarding the growth of yeasts, molds, psychrotrophs and E. coli O157:H7, L. monocytogenes, S. Typhimurium and S. aureus in Graviera Agraphon cheese during refrigerated storage at 4 and 10 °C.


Sign in / Sign up

Export Citation Format

Share Document