Study of the Morphology of the Cell Walls of Some Strains of Lactic Acid Bacteria and Related Species

1998 ◽  
Vol 61 (5) ◽  
pp. 557-562 ◽  
Author(s):  
V. MORATA de AMBROSINI ◽  
S. GONZALEZ ◽  
A. PESCE. de RUIZ HOLGADO ◽  
G. OLIVER

The objective of the present study was to find an explanation for the biological effect of the bacteria present in a biotherapeutic milk (Lactobacillus casei CRL 431 and Lactobacillus acidophilus CRL 730). The ability of bacterial cell walls to induce an immune response when introduced into an organism is well known. In this paper we specifically analyzed the morphology of these cell walls. Besides the two bacterial strains used in the fermented milk, two other lactic acid bacteria, belonging to another genus and unable to induce an immune system response, as well as a strain of Propionibacterium, of which the immune modulating capacity is known, were used in this work. We found a structural particularity in strains with immunostimulating capacity (L. casei CRL 431 and P. acidopropionici CRL 1198): molecules which protrude from the cell surface. In L. casei CRL 431 these molecules were identified as lectins because they are able to agglutinate yeast cells treated with glutaraldehyde and glycine. The structures protruding from P. acidipropionici CRL 1198 cells were teichoic acids. Teichoic acid and lectin-like structures can participate in adhesion to intestinal cells. The immunostimulation observed can be induced by the adhesion phenomenon.

Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


2021 ◽  
Vol 4 (1) ◽  
pp. 25
Author(s):  
Tri - Ujilestari ◽  
Dian Fajarwati Susilaningrum ◽  
Bernita Adelia Damayanti ◽  
Maulina Afni Saputri ◽  
Rizal Nur Alfian

The purpose of this article is to determine the content of lactic acid bacteria in a probiotic beverage (Yakult) with a starter fermentation of Lactobacillus casei Shirota strain and to find out its benefits for digestion. In this study, the library research method was used by obtaining data and materials from journals. The author tries to describe the content of lactic acid bacteria “L. casei Shirota strain” in Yakult and its benefits for the digestive system. The results showed that the levels of L. casei Shirota strain in fermented milk were 1.27-1.70% with an average of 1.42%. In the Indonesian National Standard 01-2891-2009, the lactic acid bacteria content of L. casei Shirota in fermented milk was 0.5-2.0%. L. casei Shirota can produce lactic acid and acetic acid, so that, it can decrease intestinal pH and prevent pathogens bacteria’s growth. Probiotic beverage from fermented milk using L. casei is beneficial for consumption for its ability in inhibiting the growth and development of pathogenic bacteria in the gastrointestinal tract, help the absorption of vitamins and antioxidants, eliminate toxic components contained in food, as well as producing several vitamins through the synthesis of digestive enzymes.


2007 ◽  
Vol 73 (14) ◽  
pp. 4673-4676 ◽  
Author(s):  
Taketo Kawarai ◽  
Soichi Furukawa ◽  
Hirokazu Ogihara ◽  
Makari Yamasaki

ABSTRACT We found that species combinations such as Lactobacillus casei subsp. rhamnosus IFO3831 and Saccharomyces cerevisiae Kyokai-10 can form a mixed-species biofilm in coculture. Moreover, the Kyokai-10 yeast strain can form a biofilm in monoculture in the presence of conditioned medium (CM) from L. casei IFO3831. The active substance(s) in bacterial CM is heat sensitive and has a molecular mass of between 3 and 5 kDa. In biofilms from cocultures or CM monocultures, yeast cells had a distinct morphology, with many hill-like protrusions on the cell surface.


2019 ◽  
Vol 9 (3) ◽  
pp. 95-103
Author(s):  
Asmaa Labtar ◽  
Saliha Larouci ◽  
Amel Guermouche ◽  
Farid Bensalah

Streptococcus thermophilus and Lactobacillus belong to a widely-knowngroup of bacteria that have been frequently used as starter bacteria in fermented dairy products. The aim of this study was to isolate, characterize andidentify of lactic acid bacteria (LAB) from raw cow’s fermented milk and‘Smen’ (a traditional steppe butter) in steppic area of Algeria to study someof their important enzyme-producing attributes. All selected strains of lacticacid bacteria (LAB) were identified and typed by phenotypic and genotypiccriteria.Six strains were identified as cocci thermophilic LAB and two of themwere selected and identified by using polymerase chain reaction (PCR) amplification for proA gene. Six strains of lactobacilli were identified as Lactobacillus genus using 16S rRNA gene. Species identification was performed by 16SrRNA gene sequencing and sequences were analysed using Basic LengthAlignment Search Tool (BLAST) programs. A phylogenetic tree based on 16SrRNA genes was constructed by the neighbor-joinin method.S. thermophilusstrains screened for their ability to produce lactic acid, titratable acidity, andpH was measured at 2h intervals, proteolytic activity in milk was examined.In another part, the four selected Lactobacillus were able to hydrolyze X-Galby production of β-galactosidase enzyme. All strains of LAB exhibited production of diacetyl. Overall, this study provides bacterial strains having potentialfor dairy industry.


Author(s):  
S. Aforijiku ◽  
A. A. Onilude

The aim of this study was to isolate and phenotypically characterised lactic acid bacteria (LAB) from samples of raw (cow, goat) and traditional fermented milk product (nono).The assessed characteristics of LAB as indexed in Bergeys Manual of Determinative Bacteriology are cellular characteristic (Gram staining), growth at pH 4.5 and 9.6, growth in 5% NaCl, production of ammonia from arginine, tolerance to temperature 15 and 45oC, starch hydrolysis, and fermentation of sugars test. Fifty-five LAB were isolated and identified as Pediococcus acidilactici (15), Lactobacillus plantarum (29), Lactobacillus brevis (4), Lactobacillus casei (4), and Lactobacillus fermentum (3). Four species of the Lactobacillus isolated from nono samples were identified as Lactobacillus casei, Lactobacillus brevis, Lactobacillus plantarum and  Lactobacillus fermentum while Pediococcus acidilactici was isolated from raw cow and goat milk.  Lactobacillus plantarum was the dorminant organism with the highest frequency occurrence of 52.7% while Lactobacillus fermentum had the lowest (5.5%).  Lactobacillus species are normally found in fermented milk product which could be of great importance in food industry.


2019 ◽  
Vol 9 (6) ◽  
pp. 4591-4597

Fermented foods are high in nutrient content than any other category of foods due to the presence of live microorganisms called probiotics. Its application in manufacturing of dairy foods and role in different types of disease prevention ranks it as the most exuberant. The aim of the present study was to isolate and identify lactic acid bacteria from native curd samples collected from dairy farms of Odisha state of India and explore its probiotic potential. Three morphologically distinct bacterial strains were isolated using MRS agar plates. The biochemical study confirmed that all the isolates were gram-positive. The molecular approaches were used to analyze the taxonomical diversity of isolates. 16 S rRNA sequencing was carried out and the bacterial isolates were taxonomically classified as Lactobacillus sp., Lactobacillus plantarum, Lactobacillus casei with NCBI Gene bank accession number [MG573071], [MG573072] and [MG573073] respectively. Further, the isolated bacterial strains were screened for their acid and bile tolerance competence as a principal criterion for probiotic. Among the isolates Lactobacillus casei (MG573073) was found to be highly tolerant of low pH and bile salts, posed strongest cell surface hydrophobicity of 75%. However, the maximum zone of inhibition was observed against Amoxilline/clavunic acid 44mm. The cell growth was found higher in presence of 2% inulin with cell viability 9.11 log 10 CFU/ml. In conclusion, based on the obtained results, Lactobacillus casei can act as a suitable probiotic candidate.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Maged S. Bin Masalam ◽  
Ahmed Bahieldin ◽  
Mona G. Alharbi ◽  
Saad Al-Masaudi ◽  
Soad K. Al-Jaouni ◽  
...  

Probiotic bacteria can confer health benefits to the human gastrointestinal tract. Lactic acid bacteria (LAB) are candidate probiotic bacteria that are widely distributed in nature and can be used in the food industry. The objective of this study is to isolate and characterize LAB present in raw and fermented milk in Saudi Arabia. Ninety-three suspected LAB were isolated from thirteen different types of raw and fermented milk from indigenous animals in Saudi Arabia. The identification of forty-six selected LAB strains and their genetic relatedness was performed based on 16S rDNA gene sequence comparisons. None of the strains exhibited resistance to clinically relevant antibiotics or had any undesirable hemolytic activity, but they differed in their other probiotic characteristics, that is, tolerance to acidic pH, resistance to bile, and antibacterial activity. In conclusion, the isolatesLactobacillus caseiMSJ1,Lactobacillus caseiDwan5,Lactobacillus plantarumEyLan2, andEnterococcus faeciumGail-BawZir8 are most likely the best with probiotic potentials. We speculate that studying the synergistic effects of bacterial combinations might result in a more effective probiotic potential. We suspect that raw and fermented milk products from animals in Saudi Arabia, especially Laban made from camel milk, are rich in LAB and have promising probiotic potential.


2012 ◽  
Vol 7 (1) ◽  
pp. 50 ◽  
Author(s):  
Dida Hani Rahman ◽  
Ikeu Tanziha ◽  
Sri Usmiati

Fermented milk is a healthy product that has many benefits especially for human digestive tract. Manufacturing of probiotic fermented milk products as a functional food with a viable long shelf life needs to be developed. The purpose of this study was to formulate a dried fermented milk product using probiotic bacterias. The experimental design study was a complete random design with 4 treatments using different lactic acid bacteria (LAB): A1 (Streptococcus lactis: 0.5%); A2 (Streptococcus lactis: 0.25% and Lactobacillus casei: 0.25%); A3 (Streptococcus lactis: 0.25%, Lactobacillus bulgaricus: 0.125%, Streptococcus thermophiles: 0.125%); and A4 (Streptococcus lactis: 0.25% and Bifidobacterium longum: 0.25%). The highest level of hardness was A2 product and the highest level of tenderness is A1 product. Results of proximate analysis showed that dried fermented milk products had high levels of the protein, calcium, and phosphorus. Microbiological test results showed that the amount of lactic acid bacteria (BAL) in dried fermented milk products were eligible based on CODEX: 243 (2003). Statictical analysis using ANOVA in the hedonic quality test showed that the treatments were significantly different (p 0.05) on the attributes of color, aroma, hardness, and flavor except texture.<br /><br /><br />


2021 ◽  
Vol 9 (5) ◽  
pp. 1044
Author(s):  
Jeong A Kim ◽  
Geun Su Kim ◽  
Se Mi Choi ◽  
Myeong Seon Kim ◽  
Do Young Kwon ◽  
...  

Hardening of cheese is one of major issues that degrade the quality of Home Meal Replacement (HMR) foods containing cheese such as Cheese-ddukbokki rice cake (CD, stir-fried rice cakes with shredded cheese). The quality of cheese, such as pH, proteolytic, and flavor properties, depends on various lactic acid bacteria (LAB) used in cheese fermentation. The hardening of cheese is also caused by LAB. In this study, various LAB strains were isolated from CD samples that showed rapid hardening. The correlation of LAB with the hardening of cheese was investigated. Seven of the CD samples with different manufacturing dates were collected and tested for hardening properties of cheese. Among them, strong-hardening of cheese was confirmed for two samples and weak-hardening was confirmed for one sample. All LAB in two strong-hardening samples and 40% of LAB in one weak-hardening sample were identified as Latilactobacillus curvatus. On the other hand, most LAB in normal cheese samples were identified as Leuconostoc mesenteroides and Lactobacillus casei. We prepared cheese samples in which L. curvatus (LC-CD) and L. mesenteroides (LM-CD) were most dominant, respectively. Each CD made of the prepared cheese was subjected to quality test for 50 days at 10 °C. Hardening of cheese with LC-CD dominant appeared at 30 days. However, hardening of cheese with LM-CD dominant did not appear until 50 days. The pH of the LC-CD was 5.18 ± 0.04 at 30 days, lower than that of LM-CD. The proteolytic activity of LC-CD sample was 2993.67 ± 246.17 units/g, higher than that of LM-CD sample (1421.67 ± 174.5 units/g). These results indicate that high acid production and high protease activity of L. curvatus might have caused hardening of cheese.


Sign in / Sign up

Export Citation Format

Share Document