Inactivation of Lactobacillus helveticus Bacteriophages by Thermal and Chemical Treatments

1999 ◽  
Vol 62 (8) ◽  
pp. 894-898 ◽  
Author(s):  
A. QUIBERONI ◽  
V. B. SUÁREZ ◽  
J. A. REINHEIMER

The effect of several biocides and thermal treatments on the viability of four Lactobacillus helveticus phages was investigated. Times to achieve 99% inactivation of phages at 63°C and 72°C in three suspension media were calculated. The three suspension media were tris magnesium gelatin buffer (10 mM Tris-HCl, 10 mM MgSO4, and 0.1% wt/vol gelatin), reconstituted skim milk sterile reconstituted commercial nonfat dry skim milk, and Man Rogosa Sharpe broth. The thermal resistance depended on the phage considered, but a treatment of 5 min at 90°C produced a total inactivation of high titer suspensions of all phages studied. The results obtained for the three tested media did not allow us to establish a clear difference among them, since some phages were more heat resistant in Man Rogosa Sharpe broth and others in tris magnesium gelatin buffer. From the investigation on biocides, we established that sodium hypochlorite at a concentration of 100 ppm was very effective in inactivating phages. The suitability of ethanol 75%, commonly used to disinfect utensils and laboratory equipment, was confirmed. Isopropanol turned out to be, in general, less effective than ethanol at the assayed concentrations. In contrast, peracetic acid (0.15%) was found to be an effective biocide for the complete inactivation of all phages studied after 5 min of exposure. The results allowed us to establish a basis for adopting the most effective thermal and chemical treatments for inactivating phages in dairy plant and laboratory environments.

2009 ◽  
Vol 72 (5) ◽  
pp. 1012-1019 ◽  
Author(s):  
MARIÁNGELES BRIGGILER MARCÓ ◽  
GRACIELA L. DE ANTONI ◽  
JORGE A. REINHEIMER ◽  
ANDREA QUIBERONI

The effect of several biocides, thermal treatments, and photocatalysis on the viability of four Lactobacillus plantarum phages was investigated. Times to achieve 99% inactivation (T99) of phages at 63, 72, and 90°C were evaluated in four suspension media: deMan Rogosa Sharpe broth, reconstituted skim milk, a commercial EM-glucose medium, and Tris magnesium gelatin buffer. The four phages studied were highly resistant to 63°C(T99 > 45 min); however, counts < 10 PFU/ml were achieved by heating at 90°C for 5 min. Higher thermal resistance at 72°C was observed when reconstituted skim milk and EM-glucose medium were assayed. Peracetic acid (0.15%, vol/vol) was an effective biocide for the complete inactivation of all phages studied within 5 min of exposure. Sodium hypochlorite (800 ppm) inactivated the phages completely within 30 min. Ethanol (100%) did not destroy phage particles even after 45 min. Isopropanol did not have any effect on phage viability. Phage counts < 50 PFU/ml were obtained within 180 min of photocatalytic treatment. The results obtained in this work are important for establishing adequate methods for inactivating phages in industrial plants and laboratory environments.


2018 ◽  
Vol 81 (10) ◽  
pp. 1673-1678 ◽  
Author(s):  
XIA CHEN ◽  
YING LIU ◽  
SHIYU CHAI ◽  
JING GUO ◽  
WENRU WU

ABSTRACT The uses of thermal and chemical treatments were evaluated with respect to the inactivation of the Lactobacillus virulent bacteriophage P2. Thermal treatments consisted of heating the phage at 63, 72, and 90°C in three broth media: de Man Rogosa Sharpe broth, reconstituted skim milk, and Tris magnesium gelatin buffer. Chemical treatments evaluated were ethanol, isopropanol, sodium hypochlorite, and peracetic acid at various concentrations. Phage P2 was completely inactivated in 20 and 5 min at 72 and 90°C, respectively. Reconstituted skim milk and de Man Rogosa Sharpe broth provided optimum and minimum heat protection, respectively. Only sodium hypochlorite at 400 and 800 ppm completely inactivated the phage in 50 and 30 min, respectively. Treatment with 100% ethanol and isopropanol resulted in only a ca. 5.1-log reduction. Peracetic acid at the highest concentration used (0.45%) resulted in only a 1.40-log reduction of the phage within 60 min. These results provide additional data for establishing effective methods of controlling phage contamination in dairy and laboratory environments.


2002 ◽  
Vol 65 (11) ◽  
pp. 1756-1759 ◽  
Author(s):  
VIVIANA B. SUÁREZ ◽  
JORGE A. REINHEIMER

The thermal and chemical resistance levels of four autochthonal bacteriophages of Lactococcus lactis subsp. lactis, isolated from cheese processes, was investigated. The times required to obtain 99% inactivation of phages (T99) at 63 and 72°C in three suspension media (M17 broth, reconstituted commercial nonfat skim milk, and Tris magnesium gelatin buffer) were determined. Thermal resistance was dependent on the phage studied, and the results of this study demonstrate that pasteurization treatments used in dairy industries may leave viable viral particles in milk. It was possible to determine that M17 broth was generally the least protective medium, while phosphate buffer was the most protective one. Peracetic acid (0.15%, vol/vol) was the most effective viricidal agent, with exposures of 5 min being sufficient to inactivate high-titer phage suspensions (>106 PFU/ml). To achieve total inactivation (<10 PFU/ml) of viral suspensions, sodium hypochlorite was effective at 100 ppm for only two phages, while the other two phages needed concentrations of 200 and 300 ppm. Ethanol at concentrations of 100 and 75% proved to be very efficient in inactivating phages, but isopropanol was not effective against them.


2000 ◽  
Vol 63 (4) ◽  
pp. 509-515 ◽  
Author(s):  
A. G. BINETTI ◽  
J. A. REINHEIMER

Thermal and chemical resistance of five autochthonal bacteriophages of Streptococcus thermophilus, isolated from Cuartirolo cheese wheys and yogurt, was investigated. Times to obtain 99% inactivation of phages (T99)at63°C and 72°C in three suspension media (enriched tryptic soy broth, reconstituted commercial nonfat skim milk, and tris magnesium gelatin buffer) were determined. The thermal resistance was dependent on the phages studied but not detectable counts (<10 PFU/ml) were only achieved by heating at 90°C during 5 min. The data obtained for the three assayed media did not permit verifying significant differences among them. Sodium hypochlorite (100 ppm) provided a fast inactivation of bacteriophage particles (<10 PFU/ml after 5 min). Ethanol, at concentrations of 75% and 100%, was also effective for phage destruction. Isopropanol was slightly less effective than ethanol at the same concentrations. Peracetic acid (0.15%) was also a very effective agent for phage inactivation. The results showed that these autochthonal bacteriophages were not completely inactivated neither by normal pasteurization treatments nor by some biocides commonly used in disinfection, except sodium hypochlorite and peracetic acid. The practical implications of these findings have pointed out the necessity of recognizing the importance of establishing adequate conditions to assure effective thermal and chemical treatments in dairy plants and laboratory environments.


2021 ◽  
Vol 11 (2) ◽  
pp. 811
Author(s):  
Federica Ianni ◽  
Alessandra Anna Altomare ◽  
Beniamino T. Cenci-Goga ◽  
Francesca Blasi ◽  
Luca Grispoldi ◽  
...  

Among various food sources, milk proteins remain the major vector for functional peptides endowed with several biological activities. Particularly, the proteolytic activity of lactic acid bacteria during milk fermentation has been one of the most followed strategies to produce bioactive peptides. In the present study, the exploration of the activity of several starter cultures, at different fermentation times, was firstly investigated by reversed phase-high performance liquid chromatography. Among the tested strains, Lactobacillus helveticus showed a higher proteolytic activity and it was submitted to further investigations by changing the fermentation substrate (skim milk, brain heart infusion, peptone water) as well as the extraction strategy (trichloroacetic acid vs. glass beads). The chromatographic analyses and the in vitro antioxidant and antihypertensive assays highlighted considerable differences for L. helveticus hydrolysates from different substrates, while a negligible impact by the two extraction protocols emerged. Furthermore, nano-high pressure liquid chromatography coupled with a high resolution mass spectrometry analyzer allowed the preliminary discrimination of fractions from fermented skim milk, likely responsible for the found activity. The obtained results suggest the possibility of varying the fermentation parameters in order to maximize the functional effects of the bioactive peptides.


2015 ◽  
Vol 48 (12) ◽  
pp. 1188-1193 ◽  
Author(s):  
M. T. Arias-Moliz ◽  
R. Ordinola-Zapata ◽  
P. Baca ◽  
M. Ruiz-Linares ◽  
E. García García ◽  
...  

2022 ◽  
pp. 1-9
Author(s):  
Hiroshi Nozaki ◽  
Yoshihiro Tange ◽  
Yoji Inada ◽  
Takashi Uchino ◽  
Nakanobu Azuma

<b><i>Introduction:</i></b> Ultrapurification of dialysis fluid has enabled highly efficient dialysis treatments. Online hemodiafiltration is one such treatment that uses a purified dialysis fluid as a supplemental fluid. In this method, an endotoxin retentive filter (ETRF) is used in the final step of dialysis fluid purification, with the aim of preventing leakage of endotoxins. Sodium hypochlorite and peracetic acid are used as disinfecting agents for the dialysis fluid pipes containing the ETRF; however, the effects of these agents on ETRF membrane pores have not been fully clarified. <b><i>Methods:</i></b> Water permeability (flux) and endotoxin permeability were assessed in 3 types of ETRFs made with different membrane materials: polyester polymer alloy (PEPA), polyether sulfone (PES), and polysulfone (PS). High-concentration sodium hypochlorite and 2 types of peracetic acid were used as disinfecting agents, and the changes in flux and the endotoxin sieving coefficient (SC) were measured. <b><i>Results:</i></b> After repeated use of high concentrations of sodium hypochlorite and peracetic acid, the PEPA and PES ETRFs did not permit passage of endotoxins, regardless of their flux. However, in the PS ETRF, the flux and endotoxin SC increased with the number of cleaning cycles. No differences were observed according to the concentration of peracetic acid disinfecting agents. <b><i>Conclusion:</i></b> PEPA and PES ETRFs completely prevent endotoxin leakage and can be disinfected at concentrations higher than the conventionally recommended concentration without affecting pore expansion. Even new PS ETRFs have low levels of endotoxin leakage, which increase after disinfection cycles using sodium hypochlorite and peracetic acid.


2021 ◽  
Author(s):  
Wenxia Wang ◽  
Xiaoting Liang ◽  
Junxia Zheng ◽  
Qi He

Abstract In this work, we systematically investigate the sterilization effect of six kinds of commonly used commercial disinfectants, including the DuPont Virkon disinfectant, peracetic acid disinfectant, sodium hypochlorite, bromogeramine disinfectant, water-soluble allicin, and absolute ethanol, against the Escherichia coli, Staphylococcus aureus, Monilia albican and Clostridium sporogenes. The inhibition zone was used to qualitatively determine the antibacterial effects of the six disinfectants, and then the minimum two-fold dilution method was used to quantitatively determine the minimum inhibitory concentration and minimum bactericidal concentration of the six disinfectants on the four pathogens. The result illustrated that the antibacterial effect of peracetic acid disinfectant is the best, and clostridium sporogenes is the most sensitive to it, followed by bromogermine disinfectant, which can inhibit the four pathogenic bacteria at the concentration recommended by the manufacturer. The antibacterial effect of DuPont Virkon disinfectant, sodium hypochlorite, water-soluble allicin and absolute ethanol is not as good as expected, and cannot inhibit the four kinds of pathogenic bacteria at the recommended concentration. In summary, the antibacterial effect of peracetic acid disinfectant is the strongest, followed by the bromogermine disinfectant, DuPont Virkon disinfectant, sodium hypochlorite and water-soluble allicin. The absolute ethanol exhibits the worst antibacterial properties.


2012 ◽  
Vol 102 (6) ◽  
pp. 567-574 ◽  
Author(s):  
Muqing Zhang ◽  
Charles A. Powell ◽  
Ying Guo ◽  
Melissa S. Doud ◽  
Yongping Duan

Huanglongbing (HLB) is the most devastating disease of citrus. The global citrus industry is in urgent need of effective chemical treatments for HLB control because of its rapid spreading worldwide. Due to the fastidious nature of the pathogens, and the poor permissibility of citrus leaf surfaces, effective screening of chemicals for the HLB control can be challenging. In this study, we developed a graft-based chemotherapy method to rapidly screen potential HLB-controlling chemical compounds. In addition, we improved transmission efficiency by using the best HLB-affected scion–rootstock combination, and demonstrated the HLB bacterial titer was the critical factor in transmission. The HLB-affected lemon scions had a high titer of HLB bacterium, survival rate (83.3%), and pathogen transmission rate (59.9%). Trifoliate, a widely used commercial rootstock, had the highest survival rate (>70.0%) compared with grapefruit (52.6%) and sour orange (50.4%). Using this method, we confirmed a mixture of penicillin and streptomycin was the most effective compounds in eliminating the HLB bacterium from the HLB-affected scions, and in successfully rescuing severely HLB-affected citrus germplasms. These findings are useful not only for chemical treatments but also for graft-based transmission studies in HLB and other Liberibacter diseases.


Sign in / Sign up

Export Citation Format

Share Document