scholarly journals Antimicrobial Potential of Food Lactic Acid Bacteria: Bioactive Peptide Decrypting from Caseins and Bacteriocin Production

2020 ◽  
Vol 9 (1) ◽  
pp. 65
Author(s):  
Stefano Nebbia ◽  
Cristina Lamberti ◽  
Giuliana Lo Bianco ◽  
Simona Cirrincione ◽  
Valerie Laroute ◽  
...  

Lactic acid bacteria (LAB) potential in the food industry and in the biotechnological sector is a well-established interest. LAB potential in counteracting especially food-borne infections has received growing attention, but despite being a road full of promises is yet poorly explored. Furthermore, the ability of LAB to produce antimicrobial compounds, both by ribosomal synthesis and by decrypting them from proteins, is of high value when considering the growing impact of multidrug resistant strains. The antimicrobial potential of 14 food-derived lactic acid bacteria strains has been investigated in this study. Among them, four strains were able to counteract Listeria monocytogenes growth: Lactococcus lactis SN12 and L. lactis SN17 by high lactic acid production, whereas L. lactis 41FLL3 and Lactobacillus sakei I151 by Nisin Z and Sakacin P production, respectively. Strains Lactococcus lactis MG1363, Lactobacillus rhamnosus 17D10 and Lactobacillus helveticus 4D5 were tested and selected for their potential attitude to hydrolyze caseins. All the strains were able to release bioactive peptides with already known antimicrobial, antihypertensive and opioid activities. These features render these strains or their bioactive molecules suitable for use in food as biocontrol agents, or as nutraceutical supplements to treat mild disorders such as moderate hypertension and children insomnia. These results highlight once again that LAB potential in ensuring food safety, food nutraceutical value and ultimately in favoring human health is still underexplored and underexploited.

2004 ◽  
Vol 67 (2) ◽  
pp. 403-406 ◽  
Author(s):  
R. D. RAO ◽  
W. L. WENDORFF ◽  
K. SMITH

Whey is often stored or transported for a period of time prior to processing. During this time period, galactose and lactic acid concentrations may accumulate, reducing the quality of spray-dried whey powders in regard to stickiness and agglomeration. This study surveyed industry samples of Cheddar and mozzarella cheese whey streams to determine how galactose and lactic acid concentrations changed with storage at appropriate (4°C) and abuse (37.8°C) temperatures. Samples stored at 4°C did not exhibit significant increases in levels of lactic acid or galactose. Mozzarella whey accumulated the greatest amount of galactose and lactic acid with storage at 37.8°C. Whey samples derived from cheese made from single strains of starter culture were also evaluated to determine each culture's contribution to galactose and lactic acid production. Starter cultures evaluated included Streptococcus salivarius ssp. thermophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. cremoris, and Lactococcus lactis ssp. lactis. Whey derived from L. helveticus accumulated a significantly greater amount of lactic acid upon storage at 37.8°C as compared with the other cultures. Galactose accumulation was significantly decreased in whey from L. lactis ssp. lactis stored at 37.8°C in comparison with the other cultures. Results from this study indicate that proper storage conditions (4°C) for whey prevent accumulation of galactose and lactic acid while the extent of accumulation during storage at 37.8°C varies depending on the culture(s) used in cheese production.


2014 ◽  
Vol 32 (No. 1) ◽  
pp. 54-60 ◽  
Author(s):  
C. Lamberti ◽  
F. Genovese ◽  
J.D. Coisson ◽  
G. Lobianco ◽  
L. Cocolin ◽  
...  

Nine lactic acid bacteria from artisanal-made cheeses were investigated for their ability to inhibit Listeria monocytogenes and Staphylococcus aureus. Both extracellular and surface-bound bacteriocins were recovered. While Lb. plantarum molecule was present only extracellularly, all the other strains displayed interference in both compartments. Maximum bacteriocin production was observed at the end-logarithmic phase, with the exception of Lb. plantarum (late stationary) and L. lactis subsp. cremoris (very early exponential). Lactobacillus and Lactococcus strains inhibited both List. monocytogenes and S. aureus. On the contrary, both E. faecium strains were active only on List. monocytogenes, and the enterocin A amount was enhanced under oxygen stress. All L. lactis strains (including L. lactis subsp. cremoris EL3 generally producing nisin Z) biosynthesised nisin A, while Lb. plantarum caused interference because of its very high lactic acid production. All these results suggest that artisanal-made cheeses can contain promising strains for food biosafety: these strains can be employed in toto directly in the food matrix or the purified bacteriocins can be incorporated into food packaging.  


2021 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
Wanjin Qiao ◽  
Fulu Liu ◽  
Xing Wan ◽  
Yu Qiao ◽  
Ran Li ◽  
...  

Lactococcus lactis is a commonly used fermenting bacteria in cheese, beverages and meat products. Due to the lack of simplified chassis strains, it has not been widely used in the fields of synthetic biology. Thus, the construction of lactic acid bacteria chassis strains becomes more and more important. In this study, we performed whole genome sequencing, annotation and analysis of L. lactis N8. Based on the genome analysis, we found that L. lactis N8 contains two large plasmids, and the function prediction of the plasmids shows that some regions are related to carbohydrate transport/metabolism, multi-stress resistance and amino acid uptake. L. lactis N8 contains a total of seven prophage-related fragments and twelve genomic islands. A gene cluster encoding a hybrid NRPS–PKS system that was found in L. lactis N8 reveals that the strain has the potential to synthesize novel secondary metabolites. Furthermore, we have constructed a simplified genome chassis of L. lactis N8 and achieved the largest amount of deletion of L. lactis so far. Taken together, the present study offers further insights into the function and potential role of L. lactis N8 as a model strain of lactic acid bacteria and lays the foundation for its application in the field of synthetic biology.


2020 ◽  
Author(s):  
Hai Tang ◽  
Huimin Ma ◽  
Qiangchuan Hou ◽  
Weicheng Li ◽  
Haiyan Xu ◽  
...  

Abstract Background Koumiss is a naturally fermented mare’s milk. Over recent decades, numerous studies have revealed the diversity of lactic acid bacteria in koumiss. However, there is limited information available regarding its secondary major component yeast profile. Results A total of 119 bacterial and 36 yeast species were identified among the 14 koumiss samples. The dominant bacterial species in koumiss were Lactobacillus helveticus , Lactobacillus kefiranofaciens , Lactococcus lactis , Lactococcus raffinolactis , and Citrobacter freundii. The main yeast species were Dekkera anomala , Kazachstania unispora , Meyerozyma caribbica , Pichia sp.BZ159 , Kluyveromyces marxianus , and uncultured Guehomyces . The bacterial and yeast Shannon diversity of the Xilinhaote-urban group were higher than those of the Xilingol-rural group. The most dominant organic acids were lactic, acetic, tartaric, and malic acids. Lactic acid bacteria species were mostly responsible for the accumulation of those organic acids, although Kazachstania unispora , Dekkera anomala , and Meyerozyma caribbica may also have contributed. Redundancy analysis suggested that both bacteria and yeast respond to koumiss flavor, such as Lactobacillus helveticus and Dekkera anomala are associated with sourness, astringency, bitterness, and aftertaste, whereas Lactococcus lactis and Kazachstania unispora are associated with umami. Conclusions Our results suggest that differences were observed in koumiss microbiota of Xilinhaote-urban and Xilingol-rural samples. The biodiversity of the former was higher than the latter group. Positive or negative correlations between bacteria and yeast microbiota and taste also were found.


2006 ◽  
Vol 74 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Dara K Hickey ◽  
Kieran N Kilcawley ◽  
Tom P Beresford ◽  
Elizabeth M Sheehan ◽  
Martin G Wilkinson

A detailed investigation was undertaken to determine the effects of four single starter strains, Lactococcus lactis subsp. lactis 303, Lc. lactis subsp. cremoris HP, Lc. lactis subsp. cremoris AM2, and Lactobacillus helveticus DPC4571 on the proteolytic, lipolytic and sensory characteristics of Cheddar cheese. Cheeses produced using the highly autolytic starters 4571 and AM2 positively impacted on flavour development, whereas cheeses produced from the poorly autolytic starters 303 and HP developed off-flavours. Starter selection impacted significantly on the proteolytic and sensory characteristics of the resulting Cheddar cheeses. It appeared that the autolytic and/or lipolytic properties of starter strains also influenced lipolysis, however lipolysis appeared to be limited due to a possible lack of availability or access to suitable milk fat substrates over ripening. The impact of lipolysis on the sensory characteristics of Cheddar cheese was unclear, possibly due to minimal differences in the extent of lipolysis between the cheeses at the end of ripening. As anticipated seasonal milk supply influenced both proteolysis and lipolysis in Cheddar cheese. The contribution of non-starter lactic acid bacteria towards proteolysis and lipolysis over the first 8 months of Cheddar cheese ripening was negligible.


Author(s):  
Г.С. ВОЛКОВА ◽  
Е.М. СЕРБА

Создание ферментированных продуктов функционального питания возможно только после детального изучения биологических свойств штаммов и смешанных на их основе культур. Цель настоящего исследования – изучение биологических свойств закваски, включающей лиофилизированную биомассу промышленных штаммов молочнокислых бактерий (МКБ) Lactobacillus rhamnosus L-2 и Lactobacillus helveticus 1147. Первичную идентификацию МКБ проводили в рамках API-web системы. Для оценки биосовместимости МКБ использовали капельную методику. Антимикробную активность исследовали по методу лунок. При исследовании динамики роста штаммов МКБ установлено, что лаг-фазы культур Lactobacillus rhamnosus L-2 и Lactobacillus helveticus 1147 практически совпадают и начинаются через 4–4,5 ч. Указанные штаммы имеют сходные оптимумы рН и температуры культивирования, общие источники углеводного и белкового питания, устойчивы к действию собственных бактериоцинов и бактериоцинов друг друга. Это позволяет использовать в составе закваски оба штамма. Консорциум составляли объединенные для совместного культивирования 6-часовые культуры в соотношении 1 : 1. Результаты исследований динамики роста смешанной культуры подтвердили повышение скорости роста и увеличение количества образуемой биомассы консорциума по отношению к монокультуре. Доказано, что нахождение микроорганизмов в составе консорциума повышает их биотехнологические свойства, антибиотическую активность и резистентность к антибиотикам. Результаты исследований свидетельствуют о перспективности использования молочнокислой закваски, включающей штаммы Lactobacillus rhamnosus L-2 и Lactobacillus helveticus 1147, в качестве компонента пищевых продуктов с пробиотическими свойствами. The creation of fermented functional food products is possible only after a detailed study of the biological properties of strains and their consortiums. The aim of the study was to study the biological properties of the starter culture, including the lyophilized biomass of industrial strains of lactic acid bacteria (LAB) Lactobacillus rhamnosus L-2 and Lactobacillus helveticus 1147. The primary identification of LAB was carried out as part of the API-web system. To assess the biocompatibility of LAB, a drip technique was used. Antimicrobial activity was studied by the method of holes. It was found when studying the growth dynamics of LAB strains that the lag phases of Lactobacillus rhamnosus L-2 and Lactobacillus helveticus 1147 cultures practically coincide and begin after 4–4,5 hours. These strains have similar optimal pH and culture temperatures, common sources of carbohydrate and protein nutrition, and are resistant to the action of their own bacteriocins and each other's bacteriocins. This allows you to use both strains as part of the starter culture. The consortium consisted of 6-hour crops combined for joint cultivation in a ratio of 1 : 1. The results of research on the growth dynamics of a mixed crop confirmed an increase in the growth rate and an increase in the amount of biomass produced by the consortium in relation to the monoculture. It is proved that the presence of microorganisms in the consortium increases their biotechnological properties, antibiotic activity and resistance to antibiotics. The results of the studies show the promise of using lactic acid starter culture, including strains of Lactobacillus rhamnosus L-2 and Lactobacillus helveticus 1147, as a component of food products with probiotic properties.


2008 ◽  
Vol 71 (10) ◽  
pp. 2024-2029 ◽  
Author(s):  
PONGSAK RATTANACHAIKUNSOPON ◽  
PARICHAT PHUMKHACHORN

Lactic acid bacteria isolated from various Thai fermented foods were screened for the presence of nisin gene by using PCR with primers specific to nisin A structural gene. Only one strain, Lactococcus lactis subsp. lactis TFF 221, isolated from kung jom, a traditional shrimp paste, was found to carry a nisin gene. The TFF 221 nisin had antimicrobial activity against not only closely related lactic acid bacteria but also some foodborne pathogens. It was heat stable and inactivated by α-chymotrypsin and proteinase K. Some characteristics of TFF 221 nisin were found to be very similar to those of nisin A produced by Lactococcus lactis subsp. lactis NCDO 2111. Both of them had the same antimicrobial spectrum and MICs against all indicator bacteria. However, when assayed with indicator organisms, in all cases the TFF 221 nisin produced larger zones of inhibition in agar diffusion assays than the nisin A did. Sequencing of the TFF 221 nisin gene showed that it was the natural nisin variant, nisin Z, as indicated by the substitution of asparagine residue instead of histidine at position 27. The nisin determinant in strain TFF 221 was found to be located on a conjugative transposon residing in the chromosome. The ability of the nisin produced by L. lactis subsp. lactis TFF 221 to inhibit a wide range of foodborne pathogens may be useful in improving the food safety of the fermented product, especially in the Thai environment, which suffers from perennial problems of poor food hygiene.


2014 ◽  
Vol 66 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Amarela Terzic-Vidojevic ◽  
Sanja Mihajlovic ◽  
Gordana Uzelac ◽  
Natasa Golic ◽  
Dj. Fira ◽  
...  

The aim of this study was to identify and characterize the lactic acid bacteria (LAB) of artisanal Golija raw and cooked cows? milk cheeses traditionally manufactured without the addition of starter culture. A total of 188 Gram-positive and catalase-negative isolates of Golija cheeses were obtained from seven samples of different ripening time. Phenotypebased assays as well as rep-PCR and 16S rDNA sequence analysis were undertaken for all 188 Lstrains. The most diverse species were isolated from 20-day-old BGGO8 cheese (Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus casei/paracasei, Lactobacillus sucicola, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. lactis bv. diacetylactis, Enterococcus faecium, Enterococcus durans and Leuconostoc mesenteroides). In other Golija cheeses Lactobacillus reuteri, Lactobacillus curvatus, Lactobacillus rhamnosus, Lactococcus lactis subsp. cremoris, Lactococcus garvieae, Streptococcus thermophilus and Leuconostoc pseudomesenteroides were found. Pronounced antimicrobial properties showed enterococci (13/42) and lactococci (12/31), while the good proteolytic activity demonstrated lactococci (13/31) and lactobacilli (10/29).


2004 ◽  
Vol 67 (6) ◽  
pp. 1184-1189 ◽  
Author(s):  
M. MILLETTE ◽  
W. SMORAGIEWICZ ◽  
M. LACROIX

Immobilization of living cells of lactic acid bacteria could be an alternative or complementary method of immobilizing organic acids and bacteriocins and inhibit undesirable bacteria in foods. This study evaluated the inhibition potential of immobilized Lactococcus lactis subsp. lactis ATCC 11454 on selected bacteria by a modified method of the agar spot test. L. lactis was immobilized in calcium alginate (1 to 2%)–whey protein concentrate (0 and 1%) beads. The antimicrobial potential of immobilized L. lactis was evaluated in microbiological media against pathogenic bacteria ( Escherichia coli, Salmonella, and Staphylococcus aureus) or Pseudomonas putida, a natural meat contaminant, and against seven gram-positive bacteria used as indicator strains. Results obtained in this study indicated that immobilized L. lactis inhibited the growth of S. aureus, Enterococcus faecalis, Enterococcus faecium, Lactobacillus curvatus, Lactobacillus sakei, Kocuria varians, and Pediococcus acidilactici. Only 4 h of incubation at 35°C resulted in a clear inhibition zone around the beads that increased with time. With the addition of 10 mM of a chelating agent (EDTA) to the media, results showed growth inhibition of E. coli; however, P. putida and Salmonella Typhi were unaffected by this treatment. These results indicate that immobilized lactic acid bacteria strains can be successfully used to produce nisin and inhibit bacterial growth in semisolid synthetic media.


Sign in / Sign up

Export Citation Format

Share Document