Psychrotrophic Lactic Acid Bacteria Used To Improve the Safety and Quality of Vacuum-Packaged Cooked and Peeled Tropical Shrimp and Cold-Smoked Salmon

2009 ◽  
Vol 72 (2) ◽  
pp. 365-374 ◽  
Author(s):  
S. MATAMOROS ◽  
F. LEROI ◽  
M. CARDINAL ◽  
F. GIGOUT ◽  
F. KASBI CHADLI ◽  
...  

Previously isolated lactic acid bacteria (LAB) from seafood products have been investigated for their capacity to increase the sensory shelf life of vacuum-packaged shrimp and cold-smoked salmon and to inhibit the growth of three pathogenic bacteria. Two different manufactured batches of cooked, peeled, and vacuum-packaged shrimp were inoculated with seven LAB strains separately at an initial level of 5 log CFU g−1, and the spoilage was estimated by sensory analysis after 7 and 28 days of storage at 8°C. Two Leuconostoc gelidum strains greatly extended the shelf life of both batches, two Lactococcus piscium strains had a moderate effect, two bacteria were spoilers (Lactobacillus fuchuensis and Carnobacterium alterfunditum), and the last one (another Leuconostoc gelidum strain) showed highly variable results depending on the batch considered. The four strains showing the best results (two Leuconostoc gelidum and two Lactococcus piscium strains) were selected for the same experiment in cold-smoked salmon. In this product, Lactococcus piscium strains showed better inhibiting capacities, improving the sensory quality significantly at 14 and 28 days of storage. Finally, the inhibiting capacities of two strains (one Leuconostoc gelidum strain and one Lactococcus piscium strain) were tested against three pathogenic bacteria (Vibrio cholerae, Listeria monocytogenes, and Staphylococcus aureus) by challenge tests in shrimp. LAB and pathogenic bacteria were coinoculated in vacuum-packaged shrimp and enumerated during 5 weeks. Lactococcus piscium strain EU2241 was able to reduce significantly the number of Listeria monocytogenes and S. aureus organisms in the product by 2 log throughout the study for Listeria monocytogenes and up to 4 weeks for S. aureus.

2007 ◽  
Vol 70 (11) ◽  
pp. 2485-2497 ◽  
Author(s):  
OLE MEJLHOLM ◽  
PAW DALGAARD

A cardinal parameter model was developed to predict the effect of diacetate, lactate, CO2, smoke components (phenol), pH, NaCl, temperature, and the interactions between all parameters on the growth of lactic acid bacteria (LAB) in lightly preserved seafood. A product-oriented approach based on careful chemical characterization and growth of bacteria in ready-to-eat seafoods was used to develop this new LAB growth model. Initially, cardinal parameter values for the inhibiting effect of diacetate, lactate, CO2, pH, and NaCl–water activity were determined experimentally for a mixture of LAB isolates or were obtained from the literature. Next, these values and a cardinal parameter model were used to model the effect of temperature (Tmin) and smoke components (Pmax). The cardinal parameter model was fitted to data for growth of LAB (μmax values) in lightly preserved seafood including cold-smoked and marinated products with different concentrations of naturally occurring and added organic acids. Separate product validation studies of the LAB model resulted in average bias and accuracy factor values of 1.2 and 1.5, respectively, for growth of LAB (μmax values) in lightly preserved seafood. Interaction between LAB and Listeria monocytogenes was predicted by combining the developed LAB model and an existing growth and growth boundary model for the pathogen (O. Mejlholm and P. Dalgaard, J. Food Prot. 70:70–84). The performance of the existing L. monocytogenes model was improved by taking into account the effect of microbial interaction with LAB. The observed and predicted maximum population densities of L. monocytogenes in inoculated lightly preserved seafoods were 4.7 and 4.1 log CFU g−1, respectively, whereas for naturally contaminated vacuum-packed cold-smoked salmon the corresponding values were 0.7 and 0.6 log CFU g−1 when a relative lag time of 4.5 was used for the pathogen.


2004 ◽  
Vol 67 (3) ◽  
pp. 601-606 ◽  
Author(s):  
RENATA CEGIELSKA-RADZIEJEWSKA ◽  
JAN PIKUL

The aim of this study was to determine the effect of sodium lactate addition on shelf-life extension of sliced poultry sausage packaged both in air and nitrogen atmospheres and stored in refrigerated conditions. Basic chemical composition, pH, and malonaldehyde content were assayed and color measurement using the reflection method was carried out. Microbiological examination consisted of determination of total number of aerobic psychrotrophic bacteria and number of lactic acid bacteria. Sensory evaluation of products was performed. Microbiological and sensory quality of sliced poultry meat sausage was dependent on the addition during production of sodium lactate and the composition of gases (air or nitrogen) used in packaging. Slices of poultry sausage with 1% as well as 2% of sodium lactate maintained their initial quality of evaluated sensory attributes longer, irrespective of the applied gases. Sodium lactate inhibited growth of aerobic psychrotrophic bacteria and lactic acid bacteria during refrigerated storage. Sodium lactate also inhibited the formation of malonaldehyde in sliced poultry sausage during refrigerated storage. The effectiveness of this process depended on the concentration of sodium lactate addition. It was concluded that 1% as well as 2% addition of sodium lactate could extend the shelf life of sliced poultry sausage packaged in air atmosphere and stored at 5 to 7°C by 3 or 4 times, respectively. Sliced poultry sausage treated with 2% sodium lactate packed in nitrogen had the longest (35-day) shelf life. This was a sevenfold increase in the shelf life of sliced poultry sausage compared with the control.


2014 ◽  
Vol 32 (No. 1) ◽  
pp. 61-68 ◽  
Author(s):  
I. Sakaridis ◽  
N. Soultos ◽  
Ch. Batzios ◽  
I. Ambrosiadis ◽  
P. Koidis

Lactic acid bacteria (LAB) isolated from poultry carcasses were added to BHI broth along with Salmonella spp. and Listeria monocytogenes in order to determine their antagonistic activity against the pathogens. There was a statistically significant reduction in Salmonella population on the 5<sup>th</sup> day that varied from 0.41 to 1.12 log CFU/ml. The reduction in L.&nbsp;monocytogenes population was also statistically significant and varied from 0.77 to 1.48 log CFU/ml. The LAB strain with the best inhibitory activity was chosen to examine its action against the same pathogens on the chicken skin and meat. On the chicken skin, the growth reduction on the 6<sup>th</sup> day caused by L. salivarius was lower and did not exceed the 0.54 log CFU/cm<sup>2</sup> for Salmonella spp. and 0.71 log CFU/cm<sup>2</sup> for L. monocytogenes. The reduction on the chicken meat was slightly lower for both pathogens. The results of the experiments suggest that L. salivarius (strain LAB 59) has a potential to be used as a protective culture to improve the safety and extend the shelf life of chicken products. &nbsp;


2011 ◽  
Vol 46 (10) ◽  
pp. 2042-2051 ◽  
Author(s):  
Cristian Bernardi ◽  
Barbara Ripamonti ◽  
Simone Stella ◽  
Erica Tirloni ◽  
Carla Bersani ◽  
...  

2002 ◽  
Vol 65 (2) ◽  
pp. 316-325 ◽  
Author(s):  
A. AMÉZQUITA ◽  
M. M. BRASHEARS

Forty-nine strains of lactic acid bacteria (LAB), isolated from commercially available ready-to-eat (RTE) meat products, were screened for their ability to inhibit the growth of Listeria monocytogenes at refrigeration (5°C) temperatures on agar spot tests. The three most inhibitory strains were identified as Pediococcus acidilactici, Lactobacillus casei, and Lactobacillus paracasei by 16S rDNA sequence analysis. Their antilisterial activity was quantified in associative cultures in deMan Rogosa Sharpe (MRS) broth at 5°C for 28 days, resulting in a pathogen reduction of 3.5 log10 cycles compared to its initial level. A combined culture of these strains was added to frankfurters and cooked ham coinoculated with L. monocytogenes, vacuum packaged, and stored at 5°C for 28 days. Bacteriostatic activity was observed in cooked ham, whereas bactericidal activity was observed in frankfurters. Numbers of L. monocytogenes were 4.2 to 4.7 log10 and 2.6 log10 cycles lower than controls in frankfurters and cooked ham, respectively, after the 28-day refrigerated storage. In all cases, numbers of LAB increased by only 1 log10 cycle. The strain identified as P. acidilactici was possibly a bacteriocin producer, whereas the antilisterial activity of the other two strains was due to the production of organic acids. There was no significant difference (P &gt; 0.05) in the antilisterial activity detected in frankfurters whether the LAB strains were used individually or as combined cultures. Further studies over a 56-day period indicated no impact on the quality of the product. This method represents a potential antilisterial intervention in RTE meats, because it inhibited the growth of the pathogen at refrigeration temperatures without causing sensory changes.


2008 ◽  
Vol 71 (6) ◽  
pp. 1237-1243 ◽  
Author(s):  
M. TURGIS ◽  
J. HAN ◽  
J. BORSA ◽  
M. LACROIX

Selected Chinese cinnamon, Spanish oregano, and mustard essential oils (EOs) were used in combination with irradiation to evaluate their ability to eliminate pathogenic bacteria and extend the shelf life of medium-fat-content ground beef (23% fat). Shelf life was defined as the time when the total bacterial count reached 107 CFU/g. The shelf life of ground beef was determined for 28 days at 4°C after treatment with EOs. The concentrations of EOs were predetermined such that sensory properties of cooked meat were maintained: 0.025% Spanish oregano, 0.025% Chinese cinnamon, and 0.075% mustard. Ground beef samples containing EOs were then packaged under air or a modified atmosphere and irradiated at 1.5 kGy. Ground beef samples (10 g) were taken during the storage period for enumeration of total mesophilic aerobic bacteria, Escherichia coli, Salmonella, total coliforms, lactic acid bacteria, and Pseudomonas. Mustard EO was the most efficient for reducing the total mesophilic aerobic bacteria and eliminating pathogenic bacteria. Irradiation alone completely inhibited the growth of total mesophilic aerobic and pathogenic bacteria. The combination of irradiation and EOs was better for reducing lactic acid bacteria (mustard and cinnamon EOs) and Pseudomonas (oregano and mustard EOs). The best combined treatment for extending the shelf life of ground beef for up to 28 days was EO plus irradiation (1.5 kGy) and modified atmosphere packaging.


2021 ◽  
Vol 49 ◽  
Author(s):  
Juliana Sousa Bogea ◽  
Luciane Manto ◽  
Jucilene Sena Dos Santos ◽  
Lara Franco Dos Santos ◽  
Franciele Maria Gotardo ◽  
...  

Background: Listeria monocytogenes is a pathogenic bacterium that can contaminate food and cause public health problems due its ability to form biofilms and resistance to sanitizers, it is responsible for sanitary and economic losses in food producing establishments. The difficulties in controlling biofilms and increasing resistance to traditional antibacterial agents is motivating studies of alternative potential biological agents for the control of pathogenic biofilms, among which lactic acid bacteria (LABs) are included. The objective of this work was to evaluate the activity of LABs against Listeria monocytogenes biofilm formation on polystyrene plates, a surface commonly used in the food industry.Materials, Methods & Results: Lyophilized commercial strains of Bifidobacterium animalis, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivaris and Lactobacillus acidophilus were used. The strain of Listeria monocytogenes (L4) was isolated from polystyrene mats from a poultry slaughterhouse cutting room and demonstrated the ability to attach to microplates and resistance to sanitizers (sodium hypochlorite and hydrogen peroxide) at all times, temperatures and tested surfaces. The antimicrobial activity of LABs was evaluated by the agar diffusion method. The LABs that presented action on Listeria monocytogenes were selected for the inhibition and/or removal of biofilms in microplates, and all experiments were carried out in triplicate. Only Bifidobacterium animalis and Lactobacillus plantarum demonstrated action against Listeria. monocytogenes in the agar diffusion assays and were selected for inhibition and competition assays. Furthermore, competition of LABs against Listeria monocytogenes adhesion was evaluated. There was no significant difference between LABs and Listeria monocytogenes, alone or in combination, at temperatures of 30ºC and 37ºC in the Listeria monocytogenes inhibition assays on polystyrene surface. The lactic acid bacteria evaluated did not demonstrate inhibition of Listeria monocytogenes adhesin testes with optical density visualization, however, it was possible to identify a reduction in Listeria monocytogenes counts with the application of Bifidobacterium animals and Lactobacillus plantarum in the testes of competition against biofilm formation. In competition tests Bifidobacterium animalis and Lactobacillus plantarum have an injunction in Listeria monocytogenes, indicating that these lactic acid bacteria can retard Listeria biofilm formation on polystyrene surfaces and thus help control the pathogen in the food industry.Discussion: A potential mechanism to control biofilm adhesion and formation of pathogens for nutrients and fixation on surfaces, multiplication factors and surfaces are a challenge in controlling biofilms of pathogenic microorganisms, alternative measures to traditional methods for inactivating pathogens and biofilm formers bacteria are necessary. In this sense, lactic acid bacteria generate high levels of bacteriocin and are effective in inhibiting the biofilm of pathogenic bacteria, however, our study did not reveal this. We verified that Bifidobacterium animalis and Lactobacillus plantarum have an inhibitory action on Listeria monocytogenes, indicating that these lactic acid bacteria can be used to delay the formation of biofilms by Listeria on polystyrene surfaces, helping to control this pathogen in food industry.Keywords: control of biofilm, pathogenic bacteria, food industry, polystyrene surface, FTDs.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Simone Stella ◽  
Cristian Bernardi ◽  
Erica Tirloni

In the present study the growth potential of Listeria monocytogenes in veal tartare was evaluated. A challenge test was performed on three tartare batches at 8°C, aiming to evaluate the growth potential of the pathogen. The data indicated the absence of a significant growth (δ<0.5 log cfu/g) during the entire period. When considering intermediate sampling times, an increase of 0.56 log cfu/g was detected after five days of storage in one of the batches. Microflora of veal tartare was dominated by lactic acid bacteria, that increased gradually during the trial, reaching counts up to 7 Log CFU/g in two of the three batches considered. Spoilage bacteria were present (especially Pseudomonas spp., yeasts and Enterobacteriaceae) but in very low counts and with a limited increase during the period considered. Finally, daily maximum tolerable L. monocytogenes counts were calculated to highlight the maximum acceptable load to avoid the overcoming of the legal limit of 100 CFU/g: a total increase of 0.95 log cfu/g in 12 days of shelf-life was estimated, obtaining a “safety initial concentration” at t0 of 10 CFU/g of the pathogen.


2016 ◽  
Vol 39 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Josip Vrdoljak ◽  
Vesna Dobranić ◽  
Ivana Filipović ◽  
Nevijo Zdolec

AbstractCheeses as ready-to-eat food should be considered as a potential source of foodborne pathogens, primarily Listeria monocytogenes. The aim of present study was to determine the microbiological quality of soft, semi-hard and hard cheeses during the shelf-life, with particular reference to L. monocytogenes. Five types of cheeses were sampled at different time-points during the cold storage and analyzed for presence of Salmonella and L. monocytogenes, as well as lactic acid bacteria, Escherichia coli, coagulase-positive staphylococci, yeasts, molds, sulfite-reducing clostridia and L. monocytogenes counts. Water activity, pH and NaCl content were monitored in order to evaluate the possibility of L. monocytogenes growth. Challenge test for L. monocytogenes was performed in soft whey cheese, to determine the growth potential of pathogen during the shelf-life of product. All analyzed cheeses were compliant with microbiological criteria during the shelf-life. In soft cheeses, lactic acid bacteria increased in the course of the shelf-life period (1.2-2.6 log increase), while in semi-hard and hard cheeses it decreased (1.6 and 5.2 log decrease, respectively). Soft cheeses support the growth of L. monocytogenes according to determined pH values (5.8-6.5), water activity (0.99-0.94), and NaCl content (0.3-1.2%). Challenge test showed that L. monocytogenes growth potential in selected soft cheese was 0.43 log10 cfu/g during 8 days at 4°C. Water activity in semi-hard and hard cheeses was a limiting factor for Listeria growth during the shelf-life. Soft, semi-hard and hard cheeses were microbiologically stable during their defined shelf-life. Good manufacturing and hygienic practices must be strictly followed in the production of soft cheeses as Listeria-supporting food and be focused on preventing (re)contamination.


Sign in / Sign up

Export Citation Format

Share Document