Consequences of the Development of Nisin-Resistant Listeria monocytogenes in Fermented Dairy Products

2005 ◽  
Vol 68 (11) ◽  
pp. 2383-2388 ◽  
Author(s):  
BEATRIZ MARTÍNEZ ◽  
DIEGO BRAVO ◽  
ANA RODRÍGUEZ

Wild Listeria isolates representing serovars found in artisanal cheeses commercialized in Asturias (northern Spain) were assessed for their susceptibility to several bacteriocins. Pediocin PA-1 was the most active bacteriocin followed by enterocin AS-48, nisin, and plantaricin C. However, some Listeria monocytogenes and Listeria innocua strains were already highly resistant to PA-1. Among the wild L. monocytogenes populations, the frequency of development of nisin resistance ranged from 10−6 up to 10−3, depending on the strain. Highly stable mutants with increased nisin resistance (two- to fourfold) were isolated and tested for potential cross-resistance to lysozyme, EDTA, and various NaCl concentrations and pH values. All mutants were cross-resistant to lysozyme but sensitive to EDTA. In contrast, no clear correlation could be established between nisin resistance and an altered susceptibility to NaCl or pH changes. Nisin-resistant variants were able to survive and even to multiply in milk fermented by a nisin-producing Lactococcus, but the growth of the wild-type strain was inhibited. The different phenotypes evaluated in this study are indicative of the unpredictability of the consequences of the development of nisin resistance in a dairy environment. This resistance should be considered when making a risk assessment of the long-term use of nisin to control L. monocytogenes.

2006 ◽  
Vol 69 (11) ◽  
pp. 2758-2760 ◽  
Author(s):  
DARRELL O. BAYLES ◽  
GAYLEN A. UHLICH

A surprising facet of the Listeria monocytogenes genome is the presence of 15 genes that code for regulators in the Crp/Fnr family and include the virulence regulator PrfA. The genes under the transcriptional control of these regulators are currently undetermined, with the exception of some genes controlled by the major virulence regulator PrfA. Using 12 strains of L. monocytogenes, each with an inserted gene cassette that interrupts and renders nonfunctional a different L. monocytogenes strain F2365 Crp/Fnr regulator, we heat challenged each strain at 60°C with an immersed-coil heating apparatus, modeled the survivor data to calculate the underlying mean and mode of the heat resistance distribution for each strain, and compared the thermal tolerance of each mutant to the wild-type strain to determine if any of the Crp/Fnr mutants demonstrated altered heat tolerance. All 12 of the Crp/Fnr mutant strains tested had heat resistance characteristics similar to the wild-type strain (P > 0.05), indicating that mutations in these Crp/Fnr genes neither increased nor decreased the sensitivity of L. monocytogenes strain F2365 to mild heat.


2015 ◽  
Vol 83 (5) ◽  
pp. 2175-2184 ◽  
Author(s):  
Gabriel Mitchell ◽  
Liang Ge ◽  
Qiongying Huang ◽  
Chen Chen ◽  
Sara Kianian ◽  
...  

Listeria monocytogenesis a facultative intracellular pathogen that escapes from phagosomes and grows in the cytosol of infected host cells. Most of the determinants that govern its intracellular life cycle are controlled by the transcription factor PrfA, including the pore-forming cytolysin listeriolysin O (LLO), two phospholipases C (PlcA and PlcB), and ActA. We constructed a strain that lacked PrfA but expressed LLO from a PrfA-independent promoter, thereby allowing the bacteria to gain access to the host cytosol. This strain did not grow efficiently in wild-type macrophages but grew normally in macrophages that lacked ATG5, a component of the autophagy LC3 conjugation system. This strain colocalized more with the autophagy marker LC3 (42% ± 7%) at 2 h postinfection, which constituted a 5-fold increase over the colocalization exhibited by the wild-type strain (8% ± 6%). While mutants lacking the PrfA-dependent virulence factor PlcA, PlcB, or ActA grew normally, a double mutant lacking both PlcA and ActA failed to grow in wild-type macrophages and colocalized more with LC3 (38% ± 5%). Coexpression of LLO and PlcA in a PrfA-negative strain was sufficient to restore intracellular growth and decrease the colocalization of the bacteria with LC3. In a cell-free assay, purified PlcA protein blocked LC3 lipidation, a key step in early autophagosome biogenesis, presumably by preventing the formation of phosphatidylinositol 3-phosphate (PI3P). The results of this study showed that avoidance of autophagy byL. monocytogenesprimarily involves PlcA and ActA and that either one of these factors must be present forL. monocytogenesgrowth in macrophages.


2006 ◽  
Vol 74 (2) ◽  
pp. 876-886 ◽  
Author(s):  
M. R. Garner ◽  
B. L. Njaa ◽  
M. Wiedmann ◽  
K. J. Boor

ABSTRACT Contributions of the alternative sigma factor σB to Listeria monocytogenes infection were investigated using strains bearing null mutations in sigB, prfA, or inlA or in selected inlA or prfA promoter regions. The ΔP4 inlA strain, which has a deletion in the σB-dependent P4 inlA promoter, and the ΔsigB strain had significantly reduced invasion efficiencies relative to that of the wild-type strain in the Caco-2 human colorectal epithelial cell line, while the invasion efficiency of a strain bearing a deletion in the partially σB dependent P2 prfA promoter region did not differ from that of the wild type. The virulence of the ΔsigB and ΔP4 inlA strains was attenuated in intragastrically inoculated guinea pigs, with the ΔsigB strain showing greater attenuation, while the virulence capacity of the ΔP2 prfA strain was similar to that of the wild-type strain, suggesting that attenuation of virulence due to the ΔsigB mutation does not result from loss of σB-dependent prfA transcription. Our results show that σB-dependent activation of inlA is important for cell invasion and gastrointestinal infection and suggest that σB-regulated genes in addition to inlA appear to contribute to gastrointestinal infection. Interestingly, the virulence of the ΔsigB strain was not attenuated in intravenously infected guinea pigs. We conclude that (i) L. monocytogenes σB plays a critical role in invasion of human host cells, (ii) σB-mediated contributions to invasion are, in part, due to direct effects on inlA transcription but not on prfA transcription, and (iii) σB plays a critical role during the gastrointestinal stage of listeriosis in the guinea pig but is not important for systemic spread of the organism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tyler D. Bechtel ◽  
John G. Gibbons

Listeria monocytogenes is the major causative agent of the foodborne illness listeriosis. Listeriosis presents as flu-like symptoms in healthy individuals, and can be fatal for children, elderly, pregnant women, and immunocompromised individuals. Estimates suggest that L. monocytogenes results in ∼1,600 illnesses and ∼260 deaths annually in the United States. L. monocytogenes can survive and persist in a variety of harsh environments, including conditions encountered in production of fermented dairy products such as cheese. For instance, microbial growth is often limited in soft cheese fermentation because of harsh pH, water content, and salt concentrations. However, L. monocytogenes has caused a number of deadly listeriosis outbreaks through the contamination of cheese. The purpose of this study was to understand if genetically distinct populations of L. monocytogenes are associated with particular foods, including cheese and dairy. To address this goal, we analyzed the population genetic structure of 504 L. monocytogenes strains isolated from food with publicly available genome assemblies. We identified 10 genetically distinct populations spanning L. monocytogenes lineages 1, II, and III and serotypes 1/2a, 1/2b, 1/2c, 4b, and 4c. We observed an overrepresentation of isolates from specific populations with cheese (population 2), fruit/vegetable (population 2), seafood (populations 5, 8 and 9) and meat (population 10). We used the Large Scale Blast Score Ratio pipeline and Roary to identify genes unique to population 1 and population 2 in comparison with all other populations, and screened for the presence of antimicrobial resistance genes and virulence genes across all isolates. We identified > 40 genes that were present at high frequency in population 1 and population 2 and absent in most other isolates. Many of these genes encoded for transcription factors, and cell surface anchored proteins. Additionally, we found that the virulence genes aut and ami were entirely or partially deleted in population 2. These results indicate that some L. monocytogenes populations may exhibit associations with particular foods, including cheese, and that gene content may contribute to this pattern.


2004 ◽  
Vol 72 (6) ◽  
pp. 3237-3244 ◽  
Author(s):  
Lone Dons ◽  
Emma Eriksson ◽  
Yuxuan Jin ◽  
Martin E. Rottenberg ◽  
Krister Kristensson ◽  
...  

ABSTRACT The flagellum protein flagellin of Listeria monocytogenes is encoded by the flaA gene. Immediately downstream of flaA, two genes, cheY and cheA, encoding products with homology to chemotaxis proteins of other bacteria, are located. In this study we constructed deletion mutants with mutations in flaA. cheY, and cheA to elucidate their role in the biology of infection with L. monocytogenes. The ΔcheY, ΔcheA, and double-mutant ΔcheYA mutants, but not ΔflaA mutant, were motile in liquid media. However, the ΔcheA mutant had impaired swarming and the ΔcheY and ΔcheYA mutants were unable to swarm on soft agar plates, suggesting that cheY and cheA genes encode proteins involved in chemotaxis. The ΔflaA, ΔcheY, ΔcheA, and ΔcheYA mutants (grown at 24°C) showed reduced association with and invasion of Caco-2 cells compared to the wild-type strain. However, spleens from intragastrically infected BALB/c and C57BL/6 mice showed larger and similar numbers of the ΔflaA and ΔcheYA mutants, respectively, compared to the wild-type controls. Such a discrepancy could be explained by the fact that tumor necrosis factor receptor p55 deficient mice showed dramatically exacerbated susceptibility to the wild-type but unchanged or only slightly increased levels of the ΔflaA or ΔcheYA mutant. In summary, we show that listerial flaA. cheY, and cheA gene products facilitate the initial contact with epithelial cells and contribute to effective invasion but that flaA could also be involved in the triggering of immune responses.


2008 ◽  
Vol 52 (9) ◽  
pp. 3040-3046 ◽  
Author(s):  
Ann Lismond ◽  
Paul M. Tulkens ◽  
Marie-Paule Mingeot-Leclercq ◽  
Patrice Courvalin ◽  
Françoise Van Bambeke

ABSTRACT Antibiotic efflux is observed in both eukaryotic and prokaryotic cells, modulating accumulation and resistance. The present study examines whether eukaryotic and prokaryotic fluoroquinolone transporters can cooperate in the context of an intracellular infection. We have used (i) J774 macrophages (comparing a ciprofloxacin-resistant cell line overexpressing an MRP-like transporter with wild-type cells with basal expression), (ii) Listeria monocytogenes (comparing a clinical isolate [CLIP21369] displaying ciprofloxacin resistance associated with overexpression of the Lde efflux system with a wild-type strain [EGD]), (iii) ciprofloxacin (substrate of both Lde and MRP) and moxifloxacin (nonsubstrate), and (iv) probenecid and reserpine (preferential inhibitors of MRP and Lde, respectively). The ciprofloxacin MICs for EGD were unaffected by reserpine, while those for CLIP21369 were decreased approximately fourfold (and made similar to those of EGD). Neither probenecid nor reserpine affected the moxifloxacin MICs against EGD or CLIP21369. In dose-response studies (0.01× to 100× MIC) in broth, reserpine fully restored the susceptibility of CLIP21369 to ciprofloxacin (no effect on EGD) but did not influence the activity of moxifloxacin. In studies with intracellular bacteria, reserpine, probenecid, and their combination increased the activity of ciprofloxacin in wild-type and ciprofloxacin-resistant macrophages in parallel with an increase in ciprofloxacin accumulation in macrophages for EGD and an increase in accumulation and decrease in MIC (in broth) for CLIP21369. Moxifloxacin accumulation and intracellular activity were consistently not affected by the inhibitors. A bacterial efflux pump may thus actively cooperate with a eukaryotic efflux transporter to reduce the activity of a common substrate (ciprofloxacin) toward an intracellular bacterial target.


2014 ◽  
Vol 14 (1) ◽  
pp. 15 ◽  
Author(s):  
Daisuke Kyoui ◽  
Hajime Takahashi ◽  
Satoko Miya ◽  
Takashi Kuda ◽  
Bon Kimura

2005 ◽  
Vol 187 (8) ◽  
pp. 2836-2845 ◽  
Author(s):  
Jochen Stritzker ◽  
Christoph Schoen ◽  
Werner Goebel

ABSTRACT Listeria monocytogenes mutants with deletions in aroA, aroB, or aroE exhibited strong posttranscriptional upregulation of internalin A (InlA) and InlB synthesis, which resulted in a more-than-10-fold increase in InlA-mediated internalization by epithelial Caco-2 cells and a 4-fold increase in InlB-mediated internalization by microvascular endothelial cells (human brain microvascular endothelial cells) compared to the wild-type strain. The increase in InlA and InlB production was not due to enhanced PrfA- and/or sigma factor B (SigB)-dependent inlAB transcription but was caused by enhanced translation of the inlAB transcripts in the aro mutants. All inlA(B) transcripts had a 396-nucleotide upstream 5′ untranslated region (UTR). Different deletions introduced into this UTR led to significant reductions in InlA and InlB synthesis; enhanced translation of all of the truncated transcripts in the aro mutants was, however, still observed. Thus, translation of the inlAB transcripts was subject to two modes of posttranscriptional control, one mediated by the UTR structure and the other mediated by the aro mutation. The latter mode of control seemed to be related to the predominantly anaerobic metabolism of the aro mutants.


Sign in / Sign up

Export Citation Format

Share Document