Susceptibility of Penicillium expansum Spores to Sodium Hypochlorite, Electrolyzed Oxidizing Water, and Chlorine Dioxide Solutions Modified with Nonionic Surfactants

2006 ◽  
Vol 69 (8) ◽  
pp. 1944-1948 ◽  
Author(s):  
DERRICK O. OKULL ◽  
ALI DEMIRCI ◽  
DAVE ROSENBERGER ◽  
LUKE F. LaBORDE

The use of water flotation tanks during apple packing increases the risk of contamination of apples by spores of Penicillium expansum, which may accumulate in the recirculating water. Routine addition of sanitizers to the water may prevent such contamination. Sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and electrolyzed oxidizing (EO) water have varied activity against spores of P. expansum, and their effectiveness could be enhanced using surfactants. The objective of this study was to determine the ability of three nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween 80), polyoxyethylene sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20), to enhance the efficacy of NaOCl, ClO2, and EO water against spores of P. expansum in aqueous suspension at various temperatures and pH conditions. The efficacy of NaOCl solutions was enhanced by the addition of surfactants at both pH 6.3 and pH 8 (up to 5 log CFU reduction). EO water and ClO2 were effective against P. expansum spores (up to 5 log CFU and 4 log CFU reduction, respectively), but addition of surfactants was not beneficial. All solutions were less effective at 4°C compared to 24°C irrespective of the presence of surfactants. Nonionic surfactants could potentially be used with NaOCl to improve control of P. expansum in flotation tanks, but the efficacy of such formulations should be validated under apple packing conditions.

Weed Science ◽  
1987 ◽  
Vol 35 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Woodland Hurtt ◽  
Richard H. Hodgson

The nonionic surfactants Tween 20 [oxysorbic (20 POE) polyoxyethylene sorbitan monolaurate] and Tween 80 [oxysorbic (20 POE) polyoxyethylene sorbitan monooleate] at concentrations of 0.05, 0.1, 0.2, and 0.4% v/v stimulated germination of barnyardgrass [Echinochloa crus-galli(L.) Beauv. # ECHCG] seeds in petri dishes. Stimulation occurred under both 30/20 and 25/15 C diurnal temperature cycles whether or not light was supplied during the 8-h high-temperature portion of the cycle. Barnyardgrass responded most to treatment under environmental conditions in which untreated seeds germinated the least. A 0.1% surfactant concentration often stimulated germination of weed seeds as effectively as did higher concentrations. Germination of redroot pigweed [Amaranthus retroflexusL. # AMARE] seeds was inhibited by Tween 80 in the light under both the low- and high-temperature regimes and by Tween 20 at low temperature in the light. Germination of tumble pigweed (Amaranthus albusL. # AMAAL) seeds was inhibited by both surfactants in the high-temperature regime whether or not light was supplied. Common purslane (Portulaca oleraceaL. # POROL) seeds were insensitive to treatment.


Author(s):  
T.C. Tso ◽  
H. Chu ◽  
D.W. DeJong

AbstractFatty compounds including lauryI alcohol and methyl laurate and Tween 20 surfactant (polyoxyethylene [20] sorbitan monolaurate) and Tween 80 surfactant (polyoxyethylene [20] sorbitan monooleate) with 14C-labelling at various positions were used as suckering agents for Maryland, Burley, and bright tobacco types (Nicotiana tabacum L.) and their residues on the tobacco determined. An average residue of 1.61 ppm of fatty compounds and 1.0 ppm of surfactants were found. The combined totaI of 2.6 ppm residue due to these suckering agents is far below an earlier preliminary test of 4.8 ppm of residue in comparison with 7.000 ppm naturally occurring fatty compounds in tobacco.


2021 ◽  
Vol 9 (1) ◽  
pp. 33
Author(s):  
Putu Ayu Sucitawati ◽  
Lutfi Suhendra ◽  
G. P. Ganda Putra

Microemulsions have thermodynamics and stable kinetics as carriers of ?-tocopherol compounds. This study aimed to know the effect of mixtures ratio of three nonionic surfactants and stiring time on the characteristics of ?-tocopherol microemulsion, as well as to obtain the best stiring time and mixture ratio of three nonionic surfactants to produce ?-tocopherol microemulsion. This experiment used a randomized block design with two factors. The first factor is the ratio of a mixture of three nonionic surfactants with Hydrophilic-Lipophilic Balance (HLB) 14.5. The second factor is stirring time. Data were analyzed using analysis of variance and continued with BNJ test. Test the effectiveness index to determine the best treatment. The results showed that the comparison of three surfactant mixtures, stirring duration and interaction between treatments significantly affected the characteristics of ?-tocopherol microemulsion. Comparison of the mixture of three surfactants Tween 80: Span 80: Tween 20 (v / v%) HLB 14.5 consisting of F2 (89,5 : 5,5 : 5) and 4 minutes stirring time is the best treatment for the characteristics of ?-Tocopherol microemulsion. The best treatment has the characteristics of ?-tocopherol microemulsions namely transparent appearance, stable to centrifugation (4500 rpm), pH (4.5; 5.5 and 6.5) and dilution (1: 9, 1:49 and 1:99) with Turbidity index values ??are below 1 percent. Microemulsion turbidity index values ??before and after centrifugation were 0.19 percent and microemulsion turbidity at pH 4.5 and 1: 9 dilution were 0.11 percent. Keywords: microemulsion, stirring time, surfactan non ionic, ?-Tocoferol


2012 ◽  
Vol 66 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Dejan Cirin ◽  
Mihalj Posa ◽  
Veljko Krstonosic ◽  
Maja Milanovic

The present study is concerned with the determination of the critical micelle concentration (cmc) of mixed micelles of sodium dodecyl sulfate with one of five nonionic surfactants (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85) from conductance measurements. Based on the calculated values of the ? parameters we have noticed that SDS-nonionic surfactants mostly showed strong synergistic effect. It was found that nonionic surfactants with mainly longer and more hydrophobic tail show stronger interactions with hydrophobic part of SDS, thus expressing stronger synergism. In SDS-Tween 80 binary system the strongest synergistic effect was noticed. SDS-Tween 85 micellar system showed antagonistic effect, most probably because the presence of the double bond in its three hydrophobic tails (three C18 tails) makes it sterically rigid.


2010 ◽  
Vol 24 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Russell K. Hynes ◽  
Paulos B. Chumala ◽  
Daniel Hupka ◽  
Gary Peng

A complex coacervate formulation was developed for Colletotrichum truncatum 00-003B1 (Ct), a bioherbicidal fungus against scentless chamomile, and tested in the greenhouse. A two-step process was developed to formulate Ct conidia: (1) invert emulsion preparation—emulsify an aqueous suspension of Ct conidia in nonrefined vegetable oil with the aid of a surfactant, and (2) encapsulate the Ct conidia invert emulsion by complex coacervation. Formulation ingredients, including nonrefined vegetable oils, surfactants, proteins, and carbohydrates, and formulation-processing parameters, including mixing speed and the amount of oil added to invert emulsions, were examined for maximum retention of Ct conidia in the formulation. Most formulation ingredients considered and tested in this study were compatible with Ct, with no significant reduction in conidial germination and mycelial growth. The surfactant soya lecithin promoted the greatest retention of Ct conidia (88%) in the invert emulsion, followed by sorbitan monooleate (82%), glycerol monooleate (70%), and sorbitan trioleate (55%). Optimal retention of Ct conidia in the invert emulsion was observed with a water : oil ratio of 1 : 1.8 to 1 : 3.7, and an overhead paddle stirring speed of 300 rpm when preparing the emulsion. Complex coacervate wall ingredients of 1% gelatin and 2% gum arabic were most effective for Ct conidia retention. In greenhouse studies, scentless chamomile disease rating, following a 24-h dew period, was higher on plants sprayed with the Ct conidia complex coacervate formulation than on plants with Ct conidia suspended in 0.1% Tween 80.


2021 ◽  
Vol 34 (2) ◽  
pp. 75-87
Author(s):  
Ali Z. A. Alhilfi ◽  
Ali Z. A. Alhilfi ◽  
Wael A. Swadi ◽  
Agha M. Ahmed

This study aims to prepper stable thermodynamically dilutable nanoemulsion formulation of Beauveria bassiana with the lowest surfactant concentration that could improve its solubility stability. Formulations were prepared from oil in the water nanoemulsion region of phase diagrams subjected to thermodynamic stability tests. We found propanetriol was the highest germination rate at 5% and 10% concentration, 46.66 and 53.33%, respectively. Castor oil achieved a 43.00 germination rate at 1%. Tween 80 gave 54.33 % germination rate at 10%. While Tween 20 showed a 48 % germination rate at 5%. At the concentration, 1% Term 1284 gave 43.33% rate germination. Nanoemulsion composed of propanetriol and nonionic surfactants, with a mean particle size ranging from 25.08 to 75.35 nm, was formulated for various concentrations of the oils and surfactants. Water in oil emulsion was prepared using propanetriol oil, Tween 20, Tween 80, Term 1284, and water. Nanoemulsion of 25.08, 33.75, and 75.35 nm size was obtained at a 45: 15 % ratio of oil and surfactant, and it was found to be stable. The larger droplet size 75.35 nm of formulation Tween 20 and the smaller size was 25.08 nm in the formulation of Term 1284. The higher viscosity value was 16 mPas of formulation Tween 80, and the lowest value was 7.80 in the formulation of Term 1284. To demonstrate the possible employment of these systems, they were used to formulate a nanoformulation pesticide.


Author(s):  
Arundhati Bhattacharyya ◽  
M Bajpai

Ketoconazole is an imidazole antifungal drug belonging to the class II of Biopharmaceutic Classification System. Maintenance of gastric acidity is essential for adequate dissolution and absorption of ketoconazole. Concurrent administration of antacid and antiulcer preparations decreases the oral absorption of ketoconazole often causing therapeutic failure.  The aim of this study was to evaluate whether a self-emulsifying formulation of ketoconazole would be able to overcome the pH dependent dissolution and oral bioavailability. Self-emulsifying drug delivery system (SEDDS) was prepared after selecting the oil, surfactant and co-surfactant by solubility analysis. Optimum ratio of the components was finalized on the basis of drug content, self-emulsification and mean droplet diameter. The effect of pH on dissolution was studied in comparison to the pure drug. Oral bioavailability was determined in comparison to aqueous suspension in rats and the effect of co-administration of ranitidine hydrochloride solution and a commercially available liquid antacid preparation was studied. The optimized formulation containing 20% Capryol 90 and 40% each of Carbitol and Tween 80, exhibited 100% drug release regardless of the pH whereas the pure drug exhibited a highly pH dependent dissolution. The AUC0-24 resulted with oral administration of the SEDDS formulation was about 34%, 43% and 60% higher compared to the aqueous suspension when administered alone, administered with ranitidine and administered with antacid respectively. The results of the present study demonstrate that self-emulsifying formulations can be utilized for oral delivery of weakly basic drugs like ketoconazole which exhibit pH dependent dissolution.


Sign in / Sign up

Export Citation Format

Share Document