Behavior of Escherichia coli O157:H7 on Damaged Leaves of Spinach, Lettuce, Cilantro, and Parsley Stored at Abusive Temperatures

2010 ◽  
Vol 73 (2) ◽  
pp. 212-220 ◽  
Author(s):  
ROWAIDA K. KHALIL ◽  
JOSEPH F. FRANK

Recent foodborne illness outbreaks associated with the consumption of leafy green produce indicates a need for additional information on the behavior of pathogenic bacteria on these products. Previous research indicates that pathogen growth and survival is enhanced by leaf damage. The objective of this study was to compare the behavior of Escherichia coli O157:H7 on damaged leaves of baby Romaine lettuce, spinach, cilantro, and parsley stored at three abusive temperatures (8, 12, and 15°C). The damaged portions of leaves were inoculated with approximately 105 CFU E. coli O157:H7 per leaf. The pathogen grew on damaged spinach leaves held for 3 days at 8 and 12°C (P < 0.05), with the population increasing by 1.18 and 2.08 log CFU per leaf, respectively. E. coli O157:H7 did not grow on damaged Romaine leaves at 8 or 12°C, but growth was observed after 8 h of storage at 15°C, with an increase of less than 1.0 log. Growth of E. coli O157:H7 on Romaine lettuce held at 8 or 12°C was enhanced when inocula were suspended in 0.05% ascorbic acid, indicating the possibility of inhibition by oxidation reactions associated with tissue damage. Damaged cilantro and Italian parsley leaves held at 8°C for 4 days did not support the growth of E. coli O157:H7. Behavior of the pathogen in leaf extracts differed from behavior on the damaged tissue. This study provides evidence that the damaged portion of a leafy green is a distinct growth niche that elicits different microbial responses in the various types of leafy greens.

2015 ◽  
Vol 78 (9) ◽  
pp. 1738-1744 ◽  
Author(s):  
MICHAEL KNOWLES ◽  
DOMINIC LAMBERT ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER ◽  
BURTON W. BLAIS

Control strains of bacterial pathogens such as Escherichia coli O157:H7 are commonly processed in parallel with test samples in food microbiology laboratories as a quality control measure to assure the satisfactory performance of materials used in the analytical procedure. Before positive findings can be reported for risk management purposes, analysts must have a means of verifying that pathogenic bacteria (e.g., E. coli O157:H7) recovered from test samples are not due to inadvertent contamination with the control strain routinely handled in the laboratory environment. Here, we report on the application of an in-house bioinformatic pipeline for the identification of unique genomic signature sequences in the development of specific oligonucleotide primers enabling the identification of a common positive control strain, E. coli O157:H7 (ATCC 35150), using a simple PCR procedure.


1997 ◽  
Vol 60 (8) ◽  
pp. 891-897 ◽  
Author(s):  
L. M. HUDSON ◽  
J. CHEN ◽  
A. R. HILL ◽  
M. W. GRIFFITHS

Outbreaks of enterohemorrhagic Escherichia coli O157:H7 have been commonly associated with products derived from ground beef, but recently the organism has been implicated as the causative agent in outbreaks involving yogurt and cheese. This finding has raised concern about the potential for its growth and survival in fermented dairy products. A bioluminescent strain of E. coli O157:H7 was used to determine postprocessing survival in yogurt with live cultures at pH 4.17, 4.39, and 4.47 stored at 4 and 10°C. In addition, survival of E. coli O157:H7 was monitored during the manufacture of Cottage, Colby, Romano, and Feta cheeses. Results indicated survival for 8 and 5 days at 4 and 10°C respectively in yogurt at pH 4.17, 17 and 15 days at 4 and 10°C respectively in yogurt at pH 4.39, and 17days at both 4 and 10°C in yogurt at pH 4.47. E. coli O157:H7 did not survive cooking procedures at 56°C in Cottage cheese. However, the pathogen survived for 27, 30, and 27 days in Colby, Romano, and Feta cheeses respectively. A high correlation of r2 > 0.89 was obtained between counts of bioluminescenct colonies and standard plate count for all yogurt and cheese varieties, indicating that bioluminescence was a sensitive and rapid indicator of cellular viability for E. coli O157:H7. Survival of the pathogen, as indicated by this method, is possible in highly acidic environments even at refrigeration temperatures. This poses a potential hazard should postprocessing contamination occur.


2003 ◽  
Vol 66 (9) ◽  
pp. 1637-1641 ◽  
Author(s):  
MARA C. L. NOGUEIRA ◽  
OMAR A. OYARZÁBAL ◽  
DAVID E. GOMBAS

The production of thermally concentrated fruit juices uses temperatures high enough to achieve at least a 5-log reduction of pathogenic bacteria that can occur in raw juice. However, the transportation and storage of concentrates at low temperatures prior to final packaging is a common practice in the juice industry and introduces a potential risk for postconcentration contamination with pathogenic bacteria. The present study was undertaken to evaluate the likelihood of Escherichia coli O157: H7, Listeria monocytogenes and Salmonella surviving in cranberry, lemon, and lime juice concentrates at or above temperatures commonly used for transportation or storage of these concentrates. This study demonstrates that cranberry, lemon, and lime juice concentrates possess intrinsic antimicrobial properties that will eliminate these bacterial pathogens in the event of postconcentration recontamination. Bacterial inactivation was demonstrated under all conditions; at least 5-log Salmonella inactivation was consistently demonstrated at −23°C (−10°F), at least 5-log E. coli O157:H7 inactivation was consistently demonstrated at −11°C (12°F), and at least 5-log L. monocytogenes inactivation was consistently demonstrated at 0°C (32°F).


2008 ◽  
Vol 71 (2) ◽  
pp. 252-256 ◽  
Author(s):  
JIN KYUNG KIM ◽  
MARK A. HARRISON

Ice can be used to chill romaine lettuce and maintain relative humidity during transportation. Escherichia coli O157:H7 may contaminate water used for ice. The objective of this study was to determine the potential for E. coli O157:H7 contamination of romaine lettuce from either ice contaminated with the pathogen or by transfer from lettuce surfaces via melting ice. In experiment 1, lettuce was spot inoculated with E. coli O157:H7 and chilled with ice prepared from uncontaminated tap water. In experiment 2, water inoculated with this pathogen was frozen and used to ice lettuce. Three heads of lettuce were stacked in each container and stored at 4 or 20°C. After the ice melted, E. coli O157:H7 attachment to and recovery from the lettuce leaves were determined. For experiment 1, the population of E. coli O157:H7 attached to inoculated sites averaged 3.8 and 5.5 CFU/cm2 at 4 and 20°C, respectively. Most of the uninoculated sites became contaminated with the pathogen due to ice melt. For experiment 2, 3.5 to 3.8 log CFU E. coli O157:H7 per cm2 was attached to the top leaf on the first head. After rinsing with chlorinated water (200 μg/ml), E. coli O157:H7 remained on the surface of the top head (1.8 to 2.0 log CFU/cm2). There was no difference in numbers of E. coli O157:H7 recovered from each sampling site at 4 and 20°C. Results show that E. coli O157:H7 can be transferred onto other produce layers in shipping containers from melted ice made of contaminated water and from contaminated to uncontaminated leaf surfaces.


2009 ◽  
Vol 72 (7) ◽  
pp. 1553-1559 ◽  
Author(s):  
CHRISTOPHER G. THEOFEL ◽  
LINDA J. HARRIS

Inoculum preparation methods can impact growth or survival of organisms inoculated into foods, thus complicating direct comparison of results among studies. The objective of this study was to evaluate preinoculation culture preparation for impact on Escherichia coli O157:H7 inoculated onto leaves of romaine lettuce plants and cut leaf surfaces. E. coli O157:H7 was grown quiescently or shaken at 15, 25, or 37°C to different growth phases in tryptic soy or M9 minimal salts broth or agar. Cells were harvested, washed, and suspended in 0.1% peptone, Milli Q water, or well water and refrigerated for 0 or 18 h. Prepared inoculum was spotted onto cut romaine lettuce (10 μl; 3 × 104 CFU/10 g) or onto romaine lettuce plants (20 μl; 3 × 106 CFU per leaf). Cut lettuce was sealed in 100-cm2 bags (made from a commercial polymer film) and incubated at 5 or 20°C. Lettuce plants were held at 23°C for 24 h. For all tested conditions, levels of E. coli O157:H7 increased at 20°Concut lettuce and decreased on cut lettuce stored at 5°C or on leaves of lettuce plants. At 20°C, preinoculation culture conditions had little impact on growth of E. coli O157:H7 on cut lettuce. However, survival at 5°C was significantly better (P < 0.05) for cultures grown at 15 or 37°C in minimal medium and to late stationary phase. Impact of preinoculation handling on survival on lettuce plants was less clear due to relatively high standard deviations observed among samples.


2001 ◽  
Vol 64 (10) ◽  
pp. 1489-1495 ◽  
Author(s):  
SARAH L. HOLLIDAY ◽  
ALAN J. SCOUTEN ◽  
LARRY R. BEUCHAT

Alfalfa seeds are sometimes subjected to a scarification treatment to enhance water uptake, which results in more rapid and uniform germination during sprout production. It has been hypothesized that this mechanical abrasion treatment diminishes the efficacy of chemical treatments used to kill or remove pathogenic bacteria from seeds. A study was done to compare the effectiveness of chlorine (20,000 ppm), H2O2 (8%), Ca(OH)2 (1%), Ca(OH)2 (1%) plus Tween 80 (1%), and Ca(OH)2 (1%) plus Span 20 (1%) treatments in killing Salmonella and Escherichia coli O157:H7 inoculated onto control, scarified, and polished alfalfa seeds obtained from two suppliers. The influence of the presence of organic material in the inoculum carrier on the efficacy of sanitizers was investigated. Overall, treatment with 1% Ca(OH)2 was the most effective in reducing populations of the pathogens. Reduction in populations of pathogens on seeds obtained from supplier 1 indicate that chemical treatments are less efficacious in eliminating the pathogens on scarified seeds compared to control seeds. However, the effectiveness of chemical treatment in removing Salmonella and E. coli O157:H7 from seeds obtained from supplier 2 was not markedly affected by scarification or polishing. The presence of organic material in the inoculum carrier did not have a marked influence on the efficacy of chemicals in reducing populations of test pathogens. Additional lots of control, scarified, and polished alfalfa seeds of additional varieties need to be tested before conclusions can be drawn concerning the impact of mechanical abrasion on the efficacy of chemical treatment in removing or killing Salmonella and E. coli O157:H7.


2004 ◽  
Vol 67 (5) ◽  
pp. 1014-1016 ◽  
Author(s):  
M. J. CHO ◽  
R. W. BUESCHER ◽  
M. JOHNSON ◽  
M. JANES

The effects of (E,Z)-2,6-nonadienal (NDE) and (E)-2-nonenal (NE) on Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium were investigated. A suspension of each organism of 6 to 9 log CFU/ml was incubated for 1 h at 37° C in brain heart infusion solution that contained 0 to 500 or 1,000 ppm of NDE or NE. Depending on concentration, exposure to either NDE or NE caused a reduction in CFU of each organism. Treatment with 250 and 500 ppm NDE completely eliminated viable B. cereus and Salmonella Typhimurium cells, respectively. L. monocytogenes was the most resistant to NDE, showing only about a 2-log reduction from exposure to 500 ppm for 1 h. Conversely, this concentration of NDE caused a 5.8-log reduction in E. coli O157:H7 cells. NE was also effective in inactivating organisms listed above. A higher concentration of NE, 1,000 ppm, was required to kill E. coli O157:H7, L. monocytogenes, or Salmonella Typhimurium compared with NDE. In conclusion, both NDE and NE demonstrated an apparent bactericidal activity against these pathogens.


2012 ◽  
Vol 75 (3) ◽  
pp. 480-487 ◽  
Author(s):  
GREG BEZANSON ◽  
PASCAL DELAQUIS ◽  
SUSAN BACH ◽  
ROBIN McKELLAR ◽  
ED TOPP ◽  
...  

Little is known about the influence of abiotic factors such as climate and soil chemistry on the survival of Escherichia coli O157:H7 in field lettuce. We applied a nalidixic acid–resistant derivative of strain ATCC 700728 to field-grown romaine lettuce in two regions in Canada characterized by large variances in soil type and climate. Surviving populations in soil and on lettuce leaves were estimated on sorbitol MacConkey agar supplemented with nalidixic acid. Data were fitted with the Weibull decline function to permit comparison of decay rates in the two experimental sites. E. coli O157:H7 populations fell from 105 to <102 CFU/g on leaves, and <103 CFU/g in soil within 7 days after inoculation. Analysis revealed there was no significant difference between decay rates at the two experimental sites in either environment. The results of this study suggest that the inherent ecological fitness of E. coli O157:H7 ATCC 700728 determines the extent of survival in the production environment.


2020 ◽  
Vol 83 (8) ◽  
pp. 1444-1462 ◽  
Author(s):  
GENEVIÈVE COULOMBE ◽  
ANGELA CATFORD ◽  
AMALIA MARTINEZ-PEREZ ◽  
ENRICO BUENAVENTURA

ABSTRACT Foodborne diseases are a major cause of illness in Canada. One of the main pathogens causing cases and outbreaks of foodborne illness in Canada is Escherichia coli O157:H7. From 2008 to 2018, 11 outbreaks of E. coli O157:H7 infection in Canada were linked to leafy greens, including 7 (63.6%) linked to romaine lettuce, 2 (18.2%) linked to iceberg lettuce, and 2 (18.2%) linked to other or unspecified types of leafy greens. The consumption of lettuce in Canada, the behavior of E. coli O157:H7 on lettuce leaves, and the production practices used for romaine and iceberg lettuce do not seem to explain why a higher number of outbreaks of E. coli O157:H7 infection were linked to romaine than to iceberg lettuce. However, the difference in the shape of iceberg and romaine lettuce heads could be an important factor. Among the seven outbreaks linked to romaine lettuce in Canada between 2008 and 2018, an eastern distribution of cases was observed. Cases from western provinces were reported only twice. The consumption of romaine and iceberg lettuce by the Canadian population does not seem to explain the eastern distribution of cases observed, but the commercial distribution, travel distances, and the storage practices used for lettuce may be important factors. In the past 10 years, the majority of the outbreaks of E. coli O157:H7 infection linked to romaine lettuce occurred during the spring (March to June) and fall (September to December). The timing of these outbreaks may be explained by the availability of lettuce in Canada, the growing region transition periods in the United States, and the seasonality in the prevalence of E. coli O157:H7. The consumption of romaine lettuce by the Canadian population does not explain the timing of the outbreaks observed. HIGHLIGHTS


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tessa Sjahriani ◽  
Eddy Bagus Wasito ◽  
Wiwiek Tyasningsih

Escherichia coli O157:H7 is one of the pathogenic bacteria causing foodborne disease. The use of lytic bacteriophages can be a good solution to overcome the disease. This study is aimed at isolating lytic bacteriophages from environmental sewage with E. coli O157:H7 bacterial cells. The sample used in this study was eight bacteriophages, and the technique used in identifying E. coli O157:H7 carriers of the stx1 and stx2 genes was PCR. The double layer plaque technique was used to classify bacteriophages. Plaque morphology, host specificity, and electron micrograph were used to identify the bacteriophages. The result obtained plaque morphology as a clear zone with the largest diameter size of 3.5 mm. Lytic bacteriophage could infect E. coli O157:H7 at the highest titer of 10 × 10 8   PFU / mL . Bacteriophages have been identified as Siphoviridae and Myoviridae. Phage 3, phage 4, and phage 8 could infect Atypical Diarrheagenic E. coli 1 (aDEC1) due to their host specificity. The Friedman statistical tests indicate that lytic bacteriophage can significantly lyse E. coli O157:H7 ( p = 0.012 ). The lysis of E. coli O157:H7 by phage 1, phage 2, phage 3, and phage 5 bacteriophages was statistically significant, according to Conover’s posthoc test ( p < 0.05 ). The conclusion obtained from this study is that lytic bacteriophages from environmental sewage could lyse E. coli O157:H7. Therefore, it could be an alternative biocontrol agent against E. coli O157:H7 that contaminates food causing foodborne disease.


Sign in / Sign up

Export Citation Format

Share Document